
H Peter Van Esse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4151661/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Conserved Fungal LysM Effector Ecp6 Prevents Chitin-Triggered Immunity in Plants. Science, 2010, 329, 953-955.	12.6	696
2	Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5110-5115.	7.1	491
3	Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nature Biotechnology, 2010, 28, 365-369.	17.5	464
4	The novel <i>Cladosporium fulvum</i> lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species. Molecular Microbiology, 2008, 69, 119-136.	2.5	275
5	Control of the pattern-recognition receptor EFR by an ER protein complex in plant immunity. EMBO Journal, 2009, 28, 3428-3438.	7.8	267
6	Standards for plant synthetic biology: a common syntax for exchange of <scp>DNA</scp> parts. New Phytologist, 2015, 208, 13-19.	7.3	263
7	The <i>Cladosporium fulvum</i> Virulence Protein Avr2 Inhibits Host Proteases Required for Basal Defense Â. Plant Cell, 2008, 20, 1948-1963.	6.6	230
8	The Chitin-Binding <i>Cladosporium fulvum</i> Effector Protein Avr4 Is a Virulence Factor. Molecular Plant-Microbe Interactions, 2007, 20, 1092-1101.	2.6	223
9	Cladosporium fulvum (syn. Passalora fulva), a highly specialized plant pathogen as a model for functional studies on plant pathogenic Mycosphaerellaceae. Molecular Plant Pathology, 2005, 6, 379-393.	4.2	217
10	Evidence for Functional Diversification Within a Fungal NEP1-Like Protein Family. Molecular Plant-Microbe Interactions, 2013, 26, 278-286.	2.6	192
11	Genetic modification to improve disease resistance in crops. New Phytologist, 2020, 225, 70-86.	7.3	158
12	A pigeonpea gene confers resistance to Asian soybean rust in soybean. Nature Biotechnology, 2016, 34, 661-665.	17.5	87
13	Differential Tomato Transcriptomic Responses Induced by Pepino Mosaic Virus Isolates with Differential Aggressiveness. Plant Physiology, 2011, 156, 301-318.	4.8	76
14	Tomato Transcriptional Responses to a Foliar and a Vascular Fungal Pathogen Are Distinct. Molecular Plant-Microbe Interactions, 2009, 22, 245-258.	2.6	61
15	Optimized Agroinfiltration and Virus-Induced Gene Silencing to Study Ve1-Mediated <i>Verticillium</i> Resistance in Tobacco. Molecular Plant-Microbe Interactions, 2013, 26, 182-190.	2.6	50
16	<i><scp>V</scp>e1</i> â€mediated resistance against <i><scp>V</scp>erticillium</i> does not involve a hypersensitive response in <scp>A</scp> rabidopsis. Molecular Plant Pathology, 2013, 14, 719-727.	4.2	44
17	Arabidopsis late blight: infection of a nonhost plant by <i>Albugo laibachii</i> enables full colonization by <i>Phytophthora infestans</i> . Cellular Microbiology, 2017, 19, e12628.	2.1	44
18	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. PLoS Pathogens, 2020, 16, e1008652.	4.7	44

H Peter Van Esse

#	Article	IF	CITATIONS
19	System-Wide Hypersensitive Response-Associated Transcriptome and Metabolome Reprogramming in Tomato Â. Plant Physiology, 2013, 162, 1599-1617.	4.8	41
20	<scp>PIRIN</scp> 2 stabilizes cysteine protease <scp>XCP</scp> 2 and increases susceptibility to the vascular pathogen <i>Ralstonia solanacearum</i> in Arabidopsis. Plant Journal, 2014, 79, 1009-1019.	5.7	41
21	Affinity-tags are removed from Cladosporium fulvum effector proteins expressed in the tomato leaf apoplast. Journal of Experimental Botany, 2006, 57, 599-608.	4.8	30
22	Challenges in plant cellular pathway reconstruction based on gene expression profiling. Trends in Plant Science, 2008, 13, 44-50.	8.8	20
23	The quest for durable resistance. Science, 2017, 358, 1541-1542.	12.6	13
24	Smut infection of perennial hosts: the genome and the transcriptome of the Brassicaceae smut fungus <i>Thecaphora thlaspeos</i> reveal functionally conserved and novel effectors. New Phytologist, 2019, 222, 1474-1492.	7.3	11
25	Developing Public–Private Partnerships in Plant Pathology Extension: Case Studies and Opportunities in the United States. Annual Review of Phytopathology, 2020, 58, 161-180.	7.8	5
26	Diversity and distribution of pathotypes of the soybean rust fungus Phakopsora pachyrhizi in East Africa. Plant Pathology, 2021, 70, 655-666.	2.4	4
27	Identification of HR-Inducing cDNAs from Plant Pathogens via a Gateway®-Compatible Binary Potato Virus X-Expression Vector. Methods in Molecular Biology, 2012, 835, 97-105.	0.9	3
28	Transcriptional Analysis of serk1 and serk3 Coreceptor Mutants. Plant Physiology, 2016, 172, 2516-2529.	4.8	2
29	Evaluation of soybean genotypes for resistance against the rustâ€causing fungus <i>Phakopsora pachyrhizi</i> in East Africa. Plant Pathology, 2021, 70, 841-852.	2.4	2
30	Guarding the granary. Biochemist, 2017, 39, 26-29.	0.5	0
31	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. , 2020, 16, e1008652.		0
32	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. , 2020, 16, e1008652.		0
33	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. , 2020, 16, e1008652.		0
34	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. , 2020, 16, e1008652.		0
35	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. , 2020, 16, e1008652.		0
36	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer		0

polymerization., 2020, 16, e1008652.