Stefano Pavan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4151500/publications.pdf

Version: 2024-02-01

49 papers

2,534 citations

218592 26 h-index 206029 48 g-index

52 all docs 52 docs citations

52 times ranked 2586 citing authors

#	Article	IF	CITATIONS
1	Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Molecular Breeding, 2010, 25, 1-12.	1.0	300
2	Polyphenol Oxidases in Crops: Biochemical, Physiological and Genetic Aspects. International Journal of Molecular Sciences, 2017, 18, 377.	1.8	270
3	Naturally Occurring Broad-Spectrum Powdery Mildew Resistance in a Central American Tomato Accession Is Caused by Loss of <i>Mlo</i> Function. Molecular Plant-Microbe Interactions, 2008, 21, 30-39.	1.4	269
4	Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus. Theoretical and Applied Genetics, 2011, 123, 1425-1431.	1.8	140
5	Mutation of a bHLH transcription factor allowed almond domestication. Science, 2019, 364, 1095-1098.	6.0	116
6	Loss of Function in Mlo Orthologs Reduces Susceptibility of Pepper and Tomato to Powdery Mildew Disease Caused by Leveillula taurica. PLoS ONE, 2013, 8, e70723.	1.1	113
7	Characterization of the MLO gene family in Rosaceae and gene expression analysis in Malus domestica. BMC Genomics, 2014, 15, 618.	1.2	97
8	GBS-derived SNP catalogue unveiled wide genetic variability and geographical relationships of Italian olive cultivars. Scientific Reports, 2018, 8, 15877.	1.6	84
9	Genotyping-by-sequencing of a melon (Cucumis melo L.) germplasm collection from a secondary center of diversity highlights patterns of genetic variation and genomic features of different gene pools. BMC Genomics, 2017, 18, 59.	1.2	72
10	Elucidation of the Amygdalin Pathway Reveals the Metabolic Basis of Bitter and Sweet Almonds (<i>Prunus dulcis</i>). Plant Physiology, 2018, 178, 1096-1111.	2.3	64
11	Genome-Wide Study of the Tomato SIMLO Gene Family and Its Functional Characterization in Response to the Powdery Mildew Fungus Oidium neolycopersici. Frontiers in Plant Science, 2016, 7, 380.	1.7	61
12	Biotechnological and Digital Revolution for Climate-Smart Plant Breeding. Agronomy, 2018, 8, 277.	1.3	58
13	Identification of candidate MLO powdery mildew susceptibility genes in cultivated Solanaceae and functional characterization of tobacco NtMLO1. Transgenic Research, 2015, 24, 847-858.	1.3	55
14	A Distinct Genetic Cluster in Cultivated Chickpea as Revealed by Genomeâ€wide Marker Discovery and Genotyping. Plant Genome, 2017, 10, plantgenome2016.11.0115.	1.6	54
15	Monocot and dicot MLO powdery mildew susceptibility factors are functionally conserved in spite of the evolution of class-specific molecular features. BMC Plant Biology, 2015, 15, 257.	1.6	51
16	Whole Genome Scan Reveals Molecular Signatures of Divergence and Selection Related to Important Traits in Durum Wheat Germplasm. Frontiers in Genetics, 2020, 11, 217.	1.1	50
17	Nutritional, physico-chemical and functional characterization of a global chickpea collection. Journal of Food Composition and Analysis, 2019, 84, 103306.	1.9	48
18	Recommendations for Choosing the Genotyping Method and Best Practices for Quality Control in Crop Genome-Wide Association Studies. Frontiers in Genetics, 2020, 11, 447.	1.1	48

#	Article	IF	CITATIONS
19	Structure, evolution and functional inference on the Mildew Locus O (MLO) gene family in three cultivated Cucurbitaceae spp BMC Genomics, 2015, 16, 1112.	1.2	45
20	Genotyping-by-sequencing highlights patterns of genetic structure and domestication in artichoke and cardoon. PLoS ONE, 2018, 13, e0205988.	1.1	43
21	Identification of a complete set of functional markers for the selection of er1 powdery mildew resistance in Pisum sativum L Molecular Breeding, 2013, 31, 247-253.	1.0	41
22	Genetic variation of a global germplasm collection of chickpea (Cicer arietinum L.) including Italian accessions at risk of genetic erosion. Physiology and Molecular Biology of Plants, 2017, 23, 197-205.	1.4	40
23	Characterization of Low-Strigolactone Germplasm in Pea (<i>Pisum sativum</i> L.) Resistant to Crenate Broomrape (<i>Orobanche crenata</i> Forsk.). Molecular Plant-Microbe Interactions, 2016, 29, 743-749.	1.4	37
24	Genotyping by Sequencing of Cultivated Lentil (Lens culinaris Medik.) Highlights Population Structure in the Mediterranean Gene Pool Associated With Geographic Patterns and Phenotypic Variables. Frontiers in Genetics, 2019, 10, 872.	1.1	35
25	Genetic Characterization of Apulian Olive Germplasm as Potential Source in New Breeding Programs. Plants, 2019, 8, 268.	1.6	33
26	Genetics and molecular mechanisms of resistance to powdery mildews in tomato (Solanum) Tj ETQq0 0 0 rgBT /	Overlock	10 Tf 50 462 ⁻
27	Map- vs. homology-based cloning for the recessive gene ol-2 conferring resistance to tomato powdery mildew. Euphytica, 2008, 162, 91-98.	0.6	24
28	Development and validation of breeder-friendly KASPar markers for er1, a powdery mildew resistance gene in pea (Pisum sativum L.). Molecular Breeding, 2017, 37, 1.	1.0	22
29	Screening of Olive Biodiversity Defines Genotypes Potentially Resistant to Xylella fastidiosa. Frontiers in Plant Science, 2021, 12, 723879.	1.7	20
30	Data on the chemical composition, bioactive compounds, fatty acid composition, physico-chemical and functional properties of a global chickpea collection. Data in Brief, 2019, 27, 104612.	0.5	19
31	Assessment of Genetic Diversity of the "Acquaviva Red Onion―(Allium cepa L.) Apulian Landrace. Plants, 2020, 9, 260.	1.6	16
32	Almond diversity and homozygosity define structure, kinship, inbreeding, and linkage disequilibrium in cultivated germplasm, and reveal genomic associations with nut and seed weight. Horticulture Research, 2021, 8, 15.	2.9	16
33	Single nucleotide polymorphism (SNP) diversity in an olive germplasm collection. Acta Horticulturae, 2018, , 27-32.	0.1	14
34	Genetic, Bio-Agronomic, and Nutritional Characterization of Kale (Brassica Oleracea L. var. Acephala) Diversity in Apulia, Southern Italy. Diversity, 2018, 10, 25.	0.7	14
35	Evolutionary conservation of MLO gene promoter signatures. BMC Plant Biology, 2019, 19, 150.	1.6	14
36	Macro- and Micro-Nutrient Composition and Antioxidant Activity of Chickpea and Pea Accessions. Polish Journal of Food and Nutrition Sciences, 2021, , 177-185.	0.6	14

#	Article	IF	Citations
37	Genotyping-by-Sequencing Reveals Molecular Genetic Diversity in Italian Common Bean Landraces. Diversity, 2019, 11, 154.	0.7	12
38	In Vitro and In Vivo Nutraceutical Characterization of Two Chickpea Accessions: Differential Effects on Hepatic Lipid Over-Accumulation. Antioxidants, 2020, 9, 268.	2.2	11
39	Data on the proximate composition, bioactive compounds, physicochemical and functional properties of a collection of faba beans (Vicia faba L.) and lentils (Lens culinaris Medik.). Data in Brief, 2021, 34, 106660.	0.5	11
40	Genotyping-by-Sequencing in Vigna unguiculata Landraces and Its Utility for Assessing Taxonomic Relationships. Plants, 2021, 10, 509.	1.6	10
41	Synteny-Based Development of CAPS Markers Linked to the Sweet kernel LOCUS, Controlling Amygdalin Accumulation in Almond (Prunus dulcis (Mill.) D.A.Webb). Genes, 2018, 9, 385.	1.0	9
42	Genetic Diversity in broccoli rabe (Brassica rapa L. subsp. sylvestris (L.) Janch.) from Southern Italy. Scientia Horticulturae, 2019, 253, 140-146.	1.7	9
43	Intra- and Inter-Population Genetic Diversity of "Russello―and "Timilia―Landraces from Sicily: A Proxy towards the Identification of Favorable Alleles in Durum Wheat. Agronomy, 2022, 12, 1326.	1.3	9
44	Further isolation of AFLP and LMS markers for the mapping of the Ol-2 locus related to powdery mildew (Oidium neolycopersici) resistance in tomato (Solanum lycopersicum L.). Plant Science, 2007, 172, 746-755.	1.7	8
45	Functional Characterization of a Syntaxin Involved in Tomato (Solanum lycopersicum) Resistance against Powdery Mildew. Frontiers in Plant Science, 2017, 8, 1573.	1.7	6
46	Phenolic characterization of olive genotypes potentially resistant to <i>Xylella</i> . Journal of Plant Interactions, 2022, 17, 462-474.	1.0	5
47	Merging genotyping-by-sequencing data from two ex situ collections provides insights on the pea evolutionary history. Horticulture Research, 2022, , .	2.9	3
48	Functional characterization of the powdery mildew susceptibility gene SmMLO1 in eggplant (Solanum) Tj ETQqC	0 0 ggBT	/Oyerlock 10
49	Identification of Traits, Genes, and Crops of the Future. , 2013, , 27-177.		1