
John B Lindsay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4151229/publications.pdf Version: 2024-02-01

IOHN R LINDSAV

#	Article	IF	CITATIONS
1	Evaluating Scaling Frameworks for Multiscale Geomorphometric Analysis. Geomatics, 2022, 2, 36-51.	1.0	6
2	A review of parallel computing applications in calibrating watershed hydrologic models. Environmental Modelling and Software, 2022, 151, 105370.	1.9	10
3	Automated Mapping of Transportation Embankments in Fine-Resolution LiDAR DEMs. Remote Sensing, 2021, 13, 1308.	1.8	3
4	Sensitivity of C-Band SAR Polarimetric Variables to the Directionality of Surface Roughness Parameters. Remote Sensing, 2021, 13, 2210.	1.8	4
5	Smoothing of digital elevation models and the alteration of overland flow path length distributions. Hydrological Processes, 2021, 35, e14271.	1.1	5
6	Within-Field Yield Prediction in Cereal Crops Using LiDAR-Derived Topographic Attributes with Geographically Weighted Regression Models. Remote Sensing, 2021, 13, 4152.	1.8	9
7	LiDAR DEM Smoothing and the Preservation of Drainage Features. Remote Sensing, 2019, 11, 1926.	1.8	37
8	Scale-Optimized Surface Roughness for Topographic Analysis. Geosciences (Switzerland), 2019, 9, 322.	1.0	27
9	An Analysis of Ground-Point Classifiers for Terrestrial LiDAR. Remote Sensing, 2019, 11, 1915.	1.8	15
10	Drainage Network Analysis and Structuring of Topologically Noisy Vector Stream Data. ISPRS International Journal of Geo-Information, 2019, 8, 422.	1.4	10
11	Evaluating metrics of local topographic position for multiscale geomorphometric analysis. Geomorphology, 2018, 312, 40-50.	1.1	34
12	Measuring Hyperscale Topographic Anisotropy as a Continuous Landscape Property. Geosciences (Switzerland), 2018, 8, 278.	1.0	5
13	Development of an Integrated Modelling System for Evaluating Water Quantity and Quality Effects of Individual Wetlands in an Agricultural Watershed. Water (Switzerland), 2018, 10, 774.	1.2	9
14	Comparing the Use of Terrestrial LiDAR Scanners and Pin Profilers for Deriving Agricultural Roughness Statistics. Canadian Journal of Remote Sensing, 2018, 44, 153-168.	1.1	6
15	An Open Source <scp>GIS</scp> â€Based Decision Support System for Watershed Evaluation of Best Management Practices. Journal of the American Water Resources Association, 2017, 53, 521-531.	1.0	15
16	Whitebox GAT: A case study in geomorphometric analysis. Computers and Geosciences, 2016, 95, 75-84.	2.0	184
17	The practice of DEM stream burning revisited. Earth Surface Processes and Landforms, 2016, 41, 658-668.	1.2	66
18	Efficient hybrid breaching-filling sink removal methods for flow path enforcement in digital elevation models. Hydrological Processes, 2016, 30, 846-857.	1.1	91

John B Lindsay

#	Article	IF	CITATIONS
19	Monitoring ephemeral headwater streams: a paired-sensor approach. Hydrological Processes, 2016, 30, 888-898.	1.1	23
20	DEM Fusion using a modifiedk-means clustering algorithm. International Journal of Digital Earth, 2016, 9, 1242-1255.	1.6	14
21	Evaluating DEM conditioning techniques, elevation source data, and grid resolution for field-scale hydrological parameter extraction. Journal of Hydrology, 2016, 540, 1022-1029.	2.3	74
22	Characterizing ephemeral streams in a southern Ontario watershed using electrical resistance sensors. Hydrological Processes, 2015, 29, 103-111.	1.1	27
23	Modelling surface drainage patterns in altered landscapes using LiDAR. International Journal of Geographical Information Science, 2015, 29, 397-411.	2.2	63
24	An integral image approach to performing multi-scale topographic position analysis. Geomorphology, 2015, 245, 51-61.	1.1	58
25	Sediment-assisted nutrient transfer from a small, no-till, tile drained watershed in Southwestern Ontario, Canada. Agricultural Water Management, 2015, 152, 31-40.	2.4	19
26	Temporary streams in a peatland catchment: pattern, timing, and controls on stream network expansion and contraction. Earth Surface Processes and Landforms, 2014, 39, 790-803.	1.2	46
27	Measuring the significance of a divide to local drainage patterns. International Journal of Geographical Information Science, 2013, 27, 1453-1468.	2.2	16
28	Ephemeral stream sensor design using state loggers. Hydrology and Earth System Sciences, 2011, 15, 1009-1021.	1.9	28
29	High resolution quantification of gully erosion in upland peatlands at the landscape scale. Earth Surface Processes and Landforms, 2010, 35, 876-886.	1.2	116
30	Modelling suspended sediment lead concentrations in contaminated peatland catchments using digital terrain analysis. Ecological Engineering, 2010, 36, 623-630.	1.6	15
31	Impact of gully erosion on carbon sequestration in blanket peatlands. Climate Research, 2010, 45, 31-41.	0.4	27
32	Chapter 16 Geomorphometry in TAS GIS. Developments in Soil Science, 2009, 33, 367-386.	0.5	3
33	A new approach to the application of electrical resistance sensors to measuring the onset of ephemeral streamflow in wetland environments. Water Resources Research, 2009, 45, .	1.7	27
34	The influence of elevation error on the morphometrics of channel networks extracted from DEMs and the implications for hydrological modelling. Hydrological Processes, 2008, 22, 1588-1603.	1.1	40
35	Mapping outlet points used for watershed delineation onto DEMâ€derived stream networks. Water Resources Research, 2008, 44, .	1.7	22
36	Modelling Channelling and Deflection of Wind by Topography. , 2008, , 383-406.		2

JOHN B LINDSAY

#	Article	IF	CITATIONS
37	Scale-dependent spatial variability in peatland lead pollution in the southern Pennines, UK. Environmental Pollution, 2007, 145, 111-120.	3.7	31
38	Mapping contemporary magnetic mineral concentrations in peat soils using fine-resolution digital terrain data. Catena, 2007, 70, 465-474.	2.2	12
39	Sensitivity of channel mapping techniques to uncertainty in digital elevation data. International Journal of Geographical Information Science, 2006, 20, 669-692.	2.2	48
40	Distinguishing actual and artefact depressions in digital elevation data. Computers and Geosciences, 2006, 32, 1192-1204.	2.0	81
41	Sensitivity of Digital Landscapes to Artifact Depressions in Remotely-sensed DEMs. Photogrammetric Engineering and Remote Sensing, 2005, 71, 1029-1036.	0.3	43
42	The Terrain Analysis System: a tool for hydro-geomorphic applications. Hydrological Processes, 2005, 19, 1123-1130.	1.1	112
43	Removal of artifact depressions from digital elevation models: towards a minimum impact approach. Hydrological Processes, 2005, 19, 3113-3126.	1.1	138
44	Drainage basin morphometrics for depressional landscapes. Water Resources Research, 2004, 40, .	1.7	32
45	A physically based model for calculating contributing area on hillslopes and along valley bottoms. Water Resources Research, 2003, 39, .	1.7	29
46	Using Complex Permittivity and Artificial Neural Networks for Contaminant Prediction. Journal of Environmental Engineering, ASCE, 2002, 128, 740-747.	0.7	15
47	The effects of survey frequency on estimates of scour and fill in a braided river model. Earth Surface Processes and Landforms, 2002, 27, 27-43.	1.2	65