List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/415094/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellulosic fiber reinforced cement-based composites: A review of recent research. Construction and Building Materials, 2015, 79, 115-128.	7.2	476
2	Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites. Cement and Concrete Composites, 2000, 22, 127-143.	10.7	369
3	Pozzolanic activity and filler effect of sugar cane bagasse ash in Portland cement and lime mortars. Cement and Concrete Composites, 2008, 30, 410-418.	10.7	352
4	Development of vegetable fibre–mortar composites of improved durability. Cement and Concrete Composites, 2003, 25, 185-196.	10.7	349
5	Tensile behavior of high performance natural (sisal) fibers. Composites Science and Technology, 2008, 68, 3438-3443.	7.8	318
6	Behaviour of composite soil reinforced with natural fibres. Cement and Concrete Composites, 1999, 21, 39-48.	10.7	300
7	The effect of fiber morphology on the tensile strength of natural fibers. Journal of Materials Research and Technology, 2013, 2, 149-157.	5.8	296
8	Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cement and Concrete Research, 2009, 39, 110-115.	11.0	289
9	Physical and mechanical properties of durable sisal fiber–cement composites. Construction and Building Materials, 2010, 24, 777-785.	7.2	281
10	Compressive stress–strain behavior of steel fiber reinforced-recycled aggregate concrete. Cement and Concrete Composites, 2014, 46, 65-72.	10.7	259
11	Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash. Construction and Building Materials, 2009, 23, 3301-3303.	7.2	244
12	Free, restrained and drying shrinkage of cement mortar composites reinforced with vegetable fibres. Cement and Concrete Composites, 2005, 27, 537-546.	10.7	222
13	A REVIEW ON SISAL FIBER REINFORCED POLYMER COMPOSITES. Revista Brasileira De Engenharia Agricola E Ambiental, 1999, 3, 367-379.	1.1	221
14	Alternative processing procedures for recycled aggregates in structural concrete. Construction and Building Materials, 2014, 69, 124-132.	7.2	208
15	Morphology and mechanical properties of unidirectional sisal- epoxy composites. Journal of Applied Polymer Science, 2002, 84, 2358-2365.	2.6	205
16	Cracking mechanisms in durable sisal fiber reinforced cement composites. Cement and Concrete Composites, 2009, 31, 721-730.	10.7	194
17	The hornification of vegetable fibers to improve the durability of cement mortar composites. Cement and Concrete Composites, 2011, 33, 586-595.	10.7	177
18	Effect of internal curing by using superabsorbent polymers (SAP) on autogenous shrinkage and other properties of a high-performance fine-grained concrete: results of a RILEM round-robin test. Materials and Structures/Materiaux Et Constructions, 2014, 47, 541-562.	3.1	175

#	Article	IF	CITATIONS
19	Durability of compression molded sisal fiber reinforced mortar laminates. Construction and Building Materials, 2009, 23, 2409-2420.	7.2	172
20	Recommendation of RILEM TC 232-TDT: test methods and design of textile reinforced concrete. Materials and Structures/Materiaux Et Constructions, 2016, 49, 4923-4927.	3.1	171
21	Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits. Journal of Environmental Management, 2010, 91, 1864-1871.	7.8	163
22	Degradation kinetics and aging mechanisms on sisal fiber cement composite systems. Cement and Concrete Composites, 2013, 40, 30-39.	10.7	163
23	Comparison of natural and manufactured fine aggregates in cement mortars. Cement and Concrete Research, 2007, 37, 924-932.	11.0	160
24	Use of ultrafine rice husk ash with high-carbon content as pozzolan in high performance concrete. Materials and Structures/Materiaux Et Constructions, 2009, 42, 983-992.	3.1	149
25	A review on the chemical, mechanical and microstructural characterization of carbon nanotubes-cement based composites. Construction and Building Materials, 2017, 154, 697-710.	7.2	145
26	Potential for use of crushed waste calcined-clay brick as a supplementary cementitious material in Brazil. Cement and Concrete Research, 2007, 37, 1357-1365.	11.0	141
27	Influence of particle size and specific surface area on the pozzolanic activity of residual rice husk ash. Cement and Concrete Composites, 2011, 33, 529-534.	10.7	139
28	Effect of fiber treatments on the sisal fiber properties and fiber–matrix bond in cement based systems. Construction and Building Materials, 2015, 101, 730-740.	7.2	135
29	Sustainability perspective of marble and granite residues as concrete fillers. Construction and Building Materials, 2013, 45, 1-10.	7.2	134
30	Experimental characterization of binary and ternary blended-cement concretes containing ultrafine residual rice husk and sugar cane bagasse ashes. Construction and Building Materials, 2012, 29, 641-646.	7.2	133
31	Coupled strain rate and temperature effects on the tensile behavior of strain-hardening cement-based composites (SHCC) with PVA fibers. Cement and Concrete Research, 2012, 42, 1417-1427.	11.0	114
32	Effect of hornification on the structure, tensile behavior and fiber matrix bond of sisal, jute and curauá fiber cement based composite systems. Construction and Building Materials, 2017, 139, 551-561.	7.2	108
33	Effects of elevated temperatures on the interface properties of carbon textile-reinforced concrete. Cement and Concrete Composites, 2014, 48, 26-34.	10.7	105
34	Improved pozzolanic activity of sugar cane bagasse ash by selective grinding and classification. Cement and Concrete Research, 2016, 89, 269-275.	11.0	104
35	Effect of fiber shape and morphology on interfacial bond and cracking behaviors of sisal fiber cement based composites. Cement and Concrete Composites, 2011, 33, 814-823.	10.7	101
36	Fresh and hardened-state properties of self-compacting lightweight concrete reinforced with steel fibers. Construction and Building Materials, 2016, 104, 284-292.	7.2	100

#	Article	IF	CITATIONS
37	Effect of elevated temperatures on the mechanical behavior of basalt textile reinforced refractory concrete. Materials & Design, 2015, 65, 24-33.	5.1	99
38	Performance evaluation of cement mortars modified with metakaolin or ground brick. Construction and Building Materials, 2009, 23, 1971-1979.	7.2	96
39	Durability of strain-hardening cement-based composites (SHCC). Materials and Structures/Materiaux Et Constructions, 2012, 45, 1447-1463.	3.1	96
40	Performance assessment of Ultra High Performance Fiber Reinforced Cementitious Composites in view of sustainability. Materials & Design, 2012, 36, 880-888.	5.1	86
41	Influence of natural fibers characteristics on the interface mechanics with cement based matrices. Composites Part B: Engineering, 2018, 140, 183-196.	12.0	82
42	Performance of Portland cement pastes containing nano-silica and different types of silica. Construction and Building Materials, 2017, 146, 524-530.	7.2	81
43	Optimization of normal and high strength recycled aggregate concrete mixtures by using packing model. Cement and Concrete Composites, 2017, 84, 83-92.	10.7	77
44	An experimental investigation of the fatigue behavior of sisal fibers. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 516, 90-95.	5.6	76
45	A novel mix design methodology for Recycled Aggregate Concrete. Construction and Building Materials, 2016, 122, 362-372.	7.2	76
46	Comparative testing of crack formation in strain-hardening cement-based composites (SHCC). Materials and Structures/Materiaux Et Constructions, 2016, 49, 1175-1189.	3.1	70
47	Fatigue behavior of sisal fiber reinforced cement composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 5507-5513.	5.6	67
48	Influence of MWCNT/surfactant dispersions on the rheology of Portland cement pastes. Cement and Concrete Research, 2018, 107, 101-109.	11.0	67
49	Collapse of sandwich pipes with PVA fiber reinforced cementitious composites core under external pressure. Ocean Engineering, 2014, 82, 1-13.	4.3	65
50	Effect of low modulus sisal and polypropylene fibre on the free and restrained shrinkage of mortars at early age. Cement and Concrete Research, 1999, 29, 1597-1604.	11.0	64
51	High speed tensile behavior of sisal fiber cement composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 544-552.	5.6	64
52	The effects of the early carbonation curing on the mechanical and porosity properties of high initial strength Portland cement pastes. Construction and Building Materials, 2015, 77, 448-454.	7.2	64
53	Nanosilica particles as structural buildup agents for 3D printing with Portland cement pastes. Construction and Building Materials, 2019, 219, 91-100.	7.2	62
54	THE USE OF SISAL FIBRE AS REINFORCEMENT IN CEMENT BASED COMPOSITES. Revista Brasileira De Engenharia Agricola E Ambiental, 1999, 3, 245-256.	1.1	59

#	Article	IF	CITATIONS
55	Ultimate strength behaviour of sandwich pipes filled with steel fiber reinforced concrete. Ocean Engineering, 2012, 55, 125-135.	4.3	59
56	Thermal stability of PVA fiber strain hardening cement-based composites. Construction and Building Materials, 2015, 94, 437-447.	7.2	59
57	Building materials in a circular economy: The case of wood waste as CO2-sink in bio concrete. Resources, Conservation and Recycling, 2021, 166, 105346.	10.8	56
58	Experimental fatigue behavior of pultruded glass fibre reinforced polymer composite materials. Composites Part B: Engineering, 2018, 146, 69-75.	12.0	55
59	Enhancement the Properties of Sugar Cane Bagasse Ash with High Carbon Content by a Controlled Re-calcination Process. KSCE Journal of Civil Engineering, 2018, 22, 1250-1257.	1.9	54
60	Optimization of mass concrete construction using genetic algorithms. Computers and Structures, 2004, 82, 281-299.	4.4	53
61	Mechanical behavior of hybrid steel-fiber self-consolidating concrete: Materials and structural aspects. Materials & Design, 2014, 54, 32-42.	5.1	52
62	Effect of Sisal Fiber Hornification on the Fiber-Matrix Bonding Characteristics and Bending Behavior of Cement Based Composites. Key Engineering Materials, 0, 600, 421-432.	0.4	50
63	Design of strain hardening cement-based composites with alkali treated natural curauÃ; fiber. Cement and Concrete Composites, 2018, 89, 150-159.	10.7	49
64	Development of sandwich panels combining Sisal Fiber-Cement Composites and Fiber-Reinforced Lightweight Concrete. Cement and Concrete Composites, 2018, 86, 206-223.	10.7	46
65	The biodegradative effect of Tenebrio molitor Linnaeus larvae on vulcanized SBR and tire crumb. Science of the Total Environment, 2019, 649, 1075-1082.	8.0	46
66	Tensile strength of a calcium-aluminate cementitious composite reinforced with basalt textile in a high-temperature environment. Cement and Concrete Composites, 2016, 70, 183-193.	10.7	45
67	The effect of accelerated aging on the interface of jute textile reinforced concrete. Cement and Concrete Composites, 2016, 74, 7-15.	10.7	45
68	Effect of particle size, porous structure and content of rice husk ash on the hydration process and compressive strength evolution of concrete. Construction and Building Materials, 2020, 236, 117553.	7.2	45
69	Production of silica gel from residual rice husk ash. Quimica Nova, 2011, 34, 71-75.	0.3	44
70	Interface characteristics of jute fiber systems in a cementitious matrix. Cement and Concrete Research, 2019, 116, 252-265.	11.0	42
71	Influence of local raw materials on the mechanical behaviour and fracture process of PVA-SHCC. Materials Research, 2014, 17, 146-156.	1.3	41
72	Early stages hydration of high initial strength Portland cement. Journal of Thermal Analysis and Calorimetry, 2012, 108, 725-731.	3.6	40

#	Article	IF	CITATIONS
73	Effect of nanocelluloses on the microstructure and mechanical performance of CAC cementitious matrices. Cement and Concrete Research, 2019, 119, 64-76.	11.0	39
74	A study of the carbonation profile of cement pastes by thermogravimetry and its effect on the compressive strength. Journal of Thermal Analysis and Calorimetry, 2014, 116, 69-76.	3.6	38
75	On the influence of Dendrocalamus giganteus bamboo microstructure on its mechanical behavior. Construction and Building Materials, 2016, 127, 199-209.	7.2	38
76	Effect of early age curing carbonation on the mechanical properties and durability of high initial strength Portland cement and lime-pozolan composites reinforced with long sisal fibres. Composites Part B: Engineering, 2019, 163, 351-362.	12.0	38
77	Tensile behavior of flax textile reinforced lime-mortar: Influence of reinforcement amount and textile impregnation. Cement and Concrete Composites, 2021, 119, 103984.	10.7	37
78	The Influence of Fiber Treatment on the Mechanical Behavior of Jute Textile Reinforced Concrete. Key Engineering Materials, 0, 600, 469-474.	0.4	36
79	Influence of an Impregnation Treatment on the Morphology and Mechanical Behaviour of Flax Yarns Embedded in Hydraulic Lime Mortar. Fibers, 2019, 7, 30.	4.0	36
80	Inverse identification of the bond behavior for jute fibers in cementitious matrix. Composites Part B: Engineering, 2016, 95, 440-452.	12.0	35
81	Experimental investigation and modelling of the temperature effects on the tensile behavior of textile reinforced refractory concretes. Cement and Concrete Composites, 2017, 75, 51-61.	10.7	35
82	Use of thermal analysis to determine the hydration products of oil well cement pastes containing NaCl and KCl. Journal of Thermal Analysis and Calorimetry, 2015, 122, 1279-1288.	3.6	34
83	Crystalline admixture effects on crystal formation phenomena during cement pastes' hydration. Journal of Thermal Analysis and Calorimetry, 2020, 139, 3361-3375.	3.6	34
84	Influência de ciclos molhagem-secagem em fibras de sisal sobre a aderência com matrizes de cimento Portland. Revista Materia, 2012, 17, 1024-1034.	0.2	33
85	Generalized quality control parameter for heterogenous recycled concrete aggregates: A pilot scale case study. Journal of Cleaner Production, 2019, 208, 589-601.	9.3	33
86	CO2 sequestration by high initial strength Portland cement pastes. Journal of Thermal Analysis and Calorimetry, 2013, 113, 1577-1584.	3.6	32
87	Biodegradation of Vulcanized SBR: A Comparison between Bacillus subtilis, Pseudomonas aeruginosa and Streptomyces sp. Scientific Reports, 2019, 9, 19304.	3.3	32
88	Environmental impact assessment of wood bio-concretes: Evaluation of the influence of different supplementary cementitious materials. Construction and Building Materials, 2021, 268, 121146.	7.2	32
89	Characterization and treatment of sisal fiber residues for cement-based composite application. Engenharia Agricola, 2014, 34, 812-825.	0.7	32
90	Design of structural concrete mixtures containing fine recycled concrete aggregate using packing model. Construction and Building Materials, 2020, 252, 119091.	7.2	31

#	Article	IF	CITATIONS
91	Mechanical Behavior of Natural Sisal Fibers. Journal of Biobased Materials and Bioenergy, 2010, 4, 106-113.	0.3	31
92	Thermal, Mechanical and Microstructural Analysis of Metakaolin Based Geopolymers. Materials Research, 2019, 22, .	1.3	30
93	Caracterização de cinza do bagaço de cana-de-açúcar para emprego como pozolana em materiais cimentÃcios. Quimica Nova, 2009, 32, 82-86.	0.3	29
94	Compressive stress-strain behaviour of cement mortar-composites reinforced with short sisal fibre. Materials Research, 2014, 17, 38-46.	1.3	29
95	Measuring the strength of irregularly-shaped fine particles in a microcompression tester. Minerals Engineering, 2014, 65, 149-155.	4.3	29
96	An overview of a twofold effect of crystalline admixtures in cement-based materials: from permeability-reducers to self-healing stimulators. Journal of Building Engineering, 2021, 41, 102400.	3.4	29
97	Effectiveness of Crack Control at Early Age on the Corrosion of Steel Bars in Low Modulus Sisal and Coconut Fibre-Reinforced Mortars. Cement and Concrete Research, 1998, 28, 555-565.	11.0	28
98	Modelling the structural behaviour of a dam affected by alkali-silica reaction. Communications in Numerical Methods in Engineering, 2005, 22, 1-12.	1.3	27
99	Tension stiffening approach for interface characterization in recycled aggregate concrete. Cement and Concrete Composites, 2017, 82, 176-189.	10.7	27
100	Effect of steel fiber hybridization on the fracture behavior of self-consolidating concretes. Cement and Concrete Composites, 2014, 54, 100-109.	10.7	26
101	PLA-b-PEG/magnetite hyperthermic agent prepared by Ugi four component condensation. EXPRESS Polymer Letters, 2016, 10, 188-203.	2.1	26
102	Modeling adiabatic temperature rise during concrete hydration: A data mining approach. Computers and Structures, 2006, 84, 2351-2362.	4.4	25
103	Cinza ultrafina do bagaço de cana-de-açúcar: material pozolânico de alto potencial para paÃses tropicais. Revista IBRACON De Estruturas E Materiais, 2010, 3, 50-67.	0.6	25
104	High temperatures effect on mechanical and physical performance of normal and high strength recycled aggregate concrete. Fire Safety Journal, 2020, 117, 103222.	3.1	25
105	The durability of SHCC with alkali treated curaua fiber exposed to natural weathering. Cement and Concrete Composites, 2018, 94, 116-125.	10.7	24
106	Influence of ultrafine wet grinding on pozzolanic activity of submicrometre sugar cane bagasse ash. Advances in Applied Ceramics, 2011, 110, 453-456.	1.1	23
107	Shear strength of steel fiber-reinforced concrete beams. Acta Scientiarum - Technology, 2014, 36, 389.	0.4	23
108	Study of temperature effect on macro-synthetic fiber reinforced concretes by means of Barcelona tests: An approach focused on tunnels assessment. Construction and Building Materials, 2018, 158, 443-453.	7.2	23

#	Article	IF	CITATIONS
109	Bamboo bio-concrete as an alternative for buildings' climate change mitigation and adaptation. Construction and Building Materials, 2020, 263, 120652.	7.2	23
110	Mechanical behavior of recycled lightweight concrete using EVA waste and CDW under moderate temperature. Revista IBRACON De Estruturas E Materiais, 2009, 2, 211-221.	0.6	22
111	Gypsum content determination in Portland cements by thermogravimetry. Journal of Thermal Analysis and Calorimetry, 2016, 123, 1053-1062.	3.6	22
112	Durability of Structural Recycled Aggregate Concrete Subjected to Freeze-Thaw Cycles. Sustainability, 2020, 12, 6475.	3.2	22
113	Durability under thermal loads of polyvinyl alcohol fibers. Revista Materia, 2013, 18, 1587-1595.	0.2	21
114	Feasibility of iron-rich ore tailing as supplementary cementitious material in cement pastes. Construction and Building Materials, 2021, 303, 124496.	7.2	21
115	Long-Term Compressive Behavior of Concretes with Sugarcane Bagasse Ash as a Supplementary Cementitious Material. Journal of Testing and Evaluation, 2018, 46, 564-573.	0.7	21
116	Effect of a commercial dispersion of multi walled carbon nanotubes on the hydration of an oil well cementing paste. Frontiers of Structural and Civil Engineering, 2016, 10, 174-179.	2.9	19
117	Rheological and mechanical behavior of High Strength Steel Fiber-River Gravel Self Compacting Concrete. Construction and Building Materials, 2017, 150, 606-618.	7.2	19
118	Sustainable alternatives to CO2 reduction in the cement industry: A short review. Materials Today: Proceedings, 2022, 57, 436-439.	1.8	19
119	Mechanical behaviour of coarse, lightweight, recycled and natural aggregates for concrete. Proceedings of Institution of Civil Engineers: Construction Materials, 2020, 173, 70-78.	1.1	18
120	A comparative study of hydration kinetics of different cements by thermogravimetry on calcined mass basis. Journal of Thermal Analysis and Calorimetry, 2017, 128, 1335-1342.	3.6	17
121	The influence of carboxylated styrene butadiene rubber coating on the mechanical performance of vegetable fibers and on their interface with a cement matrix. Construction and Building Materials, 2020, 262, 120770.	7.2	17
122	Innovative sandwich panels made of wood bio-concrete and sisal fiber reinforced cement composites. Construction and Building Materials, 2021, 272, 121636.	7.2	17
123	Life cycle assessment (LCA) and environmental sustainability of cementitious materials for 3D concrete printing: A systematic literature review. Journal of Building Engineering, 2022, 52, 104456.	3.4	17
124	Numerical simulation of dam construction using low-CO2-emission concrete. Materials and Structures/Materiaux Et Constructions, 2010, 43, 1061-1074.	3.1	16
125	Constructive systems for social housing deployment in developing countries: A case study using dynamic life cycle carbon assessment and cost analysis in Brazil. Energy and Buildings, 2020, 227, 110395.	6.7	16
126	Use of iron ore tailings and sediments on pavement structure. Construction and Building Materials, 2022, 342, 128072.	7.2	16

#	Article	IF	CITATIONS
127	Early stages hydration of high initial strength Portland cement. Journal of Thermal Analysis and Calorimetry, 2013, 113, 659-665.	3.6	15
128	Calcium-aluminate mortars at high temperatures: Overcoming adverse conversion effects using clinker aggregates. Cement and Concrete Composites, 2019, 96, 212-224.	10.7	15
129	Effect of pozzolanic micro and nanoparticles as secondary fillers in carbon nanotubes/cement composites. Construction and Building Materials, 2021, 281, 122603.	7.2	15
130	Pull-out behavior and tensile response of natural fibers under different relative humidity levels. Construction and Building Materials, 2021, 308, 124823.	7.2	15
131	Effect of Natural Fiber Hornification on the Fiber Matrix Interface in Cement Based Composite Systems. Key Engineering Materials, 0, 668, 118-125.	0.4	14
132	Effect of a Carbon Nanotube/Surfactant Aqueous Dispersion on the Rheological and Mechanical Properties of Portland Cement Pastes. Journal of Materials in Civil Engineering, 2018, 30, .	2.9	14
133	Effect of moisture movement on the tensile stress–strain behavior of SHCC with alkali treated curauá fiber. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	3.1	14
134	Rheological study of Portland cement pastes modified with superabsorbent polymer and nanosilica. Journal of Building Engineering, 2021, 34, 102024.	3.4	14
135	Determination of CO2 capture during accelerated carbonation of engineered cementitious composite pastes by thermogravimetry. Journal of Thermal Analysis and Calorimetry, 2019, 138, 97-109.	3.6	13
136	A comprehensive approach for designing workable bio-based cementitious composites. Journal of Building Engineering, 2021, 34, 101696.	3.4	13
137	Thermo-oxidative degradation of vulcanized SBR: A comparison between ultraviolet (UV) and microwave as recovery techniques. Journal of Polymer Research, 2021, 28, 1.	2.4	13
138	Influence of steel fibers on the development of alkali-aggregate reaction. Cement and Concrete Research, 2010, 40, 598-604.	11.0	12
139	Cinzas de biomassa geradas na agroindústria do cacau: caracterização e uso em substituição ao cimento. Ambiente ConstruÃdo, 2015, 15, 321-334.	0.4	12
140	Effect of Cellulose Nanopulp on Autogenous and Drying Shrinkage of Cement Based Composites. , 2015, , 325-330.		12
141	Analytical tool for assessment of the rheological behavior of recycled aggregate concrete. Construction and Building Materials, 2021, 309, 125166.	7.2	12
142	How Different Tools Contribute to Climate Change Mitigation in a Circular Building Environment?—A Systematic Literature Review. Sustainability, 2022, 14, 3759.	3.2	12
143	Influence of Recycled Aggregate on the Rheological Behavior of Cement Mortar. Key Engineering Materials, 0, 600, 297-307.	0.4	11
144	On the validation of integrated DIC with tapered double cantilever beam tests. Engineering Fracture Mechanics, 2018, 191, 311-323.	4.3	11

#	Article	IF	CITATIONS
145	Influence of Styreneâ€Butadiene Coâ€Polymer on the Hydration Kinetics of SBRâ€Modified Well Cement Slurries. Macromolecular Symposia, 2018, 380, 1800131.	0.7	11
146	Dispersion of Carbon Nanotubes with Different Types of Superplasticizer as a Dispersing Agent for Self-Sensing Cementitious Materials. Applied Sciences (Switzerland), 2021, 11, 8452.	2.5	11
147	COMPORTAMENTO EM COMPRESSÃFO DE ARGAMASSAS REFORÇADAS COM FIBRAS NATURAIS. I RELAÇÃFO TENSÃFO-DEFORMAÇÃFO EXPERIMENTAL E PROCESSO DE FRATURA. Revista Brasileira De Engenharia Agricola E Ambiental, 1997, 1, 79-88.	1.1	11
148	Evaluation of partial clinker replacement by sugar cane bagasse ash: CO2 emission reductions and potential for carbon credits. Revista IBRACON De Estruturas E Materiais, 2012, 5, 229-251.	0.6	11
149	Microstructural characterization of self-healing products in cementitious systems containing crystalline admixture in the short- and long-term. Cement and Concrete Composites, 2022, 126, 104369.	10.7	11
150	Evaluation of durability to wet/dry cycling of cement mortar composites reinforced with nanofibrillated cellulose. , 2012, , 33-41.		10
151	Experimental and numerical research on the potentialities of layered reinforcement configuration of continuous sisal fibers for thin mortar panels. Construction and Building Materials, 2016, 102, 792-801.	7.2	10
152	Hydration at early ages of styrene-butadiene copolymers cementitious systems. Journal of Thermal Analysis and Calorimetry, 2018, 131, 1041-1054.	3.6	10
153	Influence of Alkaline Hornification Treatment Cycles on the Mechanical Behavior in Curaua Fibers. Macromolecular Symposia, 2018, 381, 1800096.	0.7	10
154	Coupled temperature and moisture effects on the tensile behavior of strain hardening cementitious composites (SHCC) reinforced with PVA fibers. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	3.1	10
155	Influence of Water Amount and Immersion Time on the Sisal Fibers Hornification Process. Journal of Natural Fibers, 2021, 18, 1712-1721.	3.1	10
156	Influence of Wetting and Drying Cycles on Physical and Mechanical Behavior of Recycled Aggregate Concrete. Materials, 2020, 13, 5675.	2.9	10
157	INFLUENCE OF INITIAL CaO/SiO2RATIO ON THE HYDRATION OF RICE HUSK ASH-Ca(OH)2AND SUGAR CANE BAGASSE ASH-Ca(OH)2PASTES. Quimica Nova, 2014, , .	0.3	9
158	Mechanical Behavior of Self-Compacting Soil-Cement-Sisal Fiber Composites. Key Engineering Materials, 0, 634, 421-432.	0.4	9
159	Tension stiffening of steel-fiber-reinforced concrete. Acta Scientiarum - Technology, 2016, 38, 455.	0.4	9
160	Efeito do envelhecimento acelerado sobre as propriedades de microconcreto reforçado com fibras longas de sisal. Ambiente ConstruÃdo, 2019, 19, 7-20.	0.4	9
161	Mechanical Response and Analysis of Cracking Process in Hybrid TRM Composites with Flax Textile and Curauá Fibres. Polymers, 2021, 13, 715.	4.5	9
162	Effect of Polyaniline and H ₂ O ₂ Surface Modification on the Tensile Behavior and Chemical Properties of Coir Fibers. Journal of Biobased Materials and Bioenergy, 2014, 8, 578-586.	0.3	9

#	Article	IF	CITATIONS
163	Modeling Pore Continuity and Durability of Cementitious Sealing Material. Journal of Energy Resources Technology, Transactions of the ASME, 2014, 136, .	2.3	8
164	Oil Spill Cleanâ€Up Tool Based on Castor Oil and Coffee Grounds Magnetic Resins. Macromolecular Symposia, 2018, 380, 1800095.	0.7	8
165	Reinforcing Effect of Carbon Nanotubes/Surfactant Dispersions in Portland Cement Pastes. Advances in Civil Engineering, 2018, 2018, 1-9.	0.7	8
166	ARGAMASSAS DE TERRA VERSUS CONVENCIONAIS: AVALIAÇÃ $_{ m f}$ O DO DESEMPENHO AMBIENTAL CONSIDERANDO O CICLO DE VIDA. Mix SustentÃ $_{ m i}$ vel, 2020, 6, 115-128.	0.0	8
167	Evaluation of the Metakaolin Pozzolanic Reactivity in Cement Pastes. Materials Science Forum, 2008, 591-593, 827-832.	0.3	7
168	Efeito do tempo de exposição a uma atmosfera coqueificante na microestrutura e nas propriedades de um concreto refratário usado na indústria petroquÃmica. Ceramica, 2012, 58, 195-204.	0.8	7
169	Flexural behavior of hybrid steel fiber reinforced self-consolidating concretes. Revista Escola De Minas, 2014, 67, 27-32.	0.1	7
170	Sewage sludge ash (SSA) in high performance concrete: characterization and application. Revista IBRACON De Estruturas E Materiais, 2016, 9, 989-1006.	0.6	7
171	Determining the adiabatic temperature rise of concrete by inverse analysis: case study of a spillway gate pier. European Journal of Environmental and Civil Engineering, 2017, 21, 272-288.	2.1	7
172	Use of simple non-destructive techniques to evaluate the hydration reactions of PVA-modified cement pastes. Construction and Building Materials, 2017, 133, 340-347.	7.2	7
173	A study of CO2 capture by high initial strength Portland cement pastes at early curing stages by new non-conventional thermogravimetry and non-conventional differential thermal analysis. Journal of Thermal Analysis and Calorimetry, 2017, 129, 1341-1352.	3.6	7
174	Polyaniline and magnetite on curaua fibers for molecular interface improvement with a cement matrix. Journal of Molecular Structure, 2021, 1233, 130101.	3.6	7
175	Thermal-Energy Analysis and Life Cycle GHG Emissions Assessments of Innovative Earth-Based Bamboo Plastering Mortars. Sustainability, 2021, 13, 10429.	3.2	7
176	Influência da substituição parcial de cimento por cinza ultrafina da casca de arroz com elevado teor de carbono nas propriedades do concreto. Ambiente ConstruÃdo, 2009, 9, 99-107.	0.4	7
177	Avaliação de estratégias para a mitigação dos impactos ambientais de revestimentos argamassados no Brasil. Ambiente ConstruÁdo, 2020, 20, 343-362.	0.4	7
178	Avaliação do Ciclo de Vida de materiais cimentÃcios utilizados no Brasil: estudo para o bloco de concreto e diferentes argamassas. LALCA- Revista Latino Americana Em Avaliação Do Ciclo De Vida, 2019, 2, 34-61.	0.3	7
179	Potencialidades da metacaolinita e do tijolo queimado moÃdo como substitutos parciais do cimento Portland. Revista Brasileira De Engenharia Agricola E Ambiental, 2000, 4, 437-444.	1.1	6
180	Influence of stone cutting waste and ground waste clay brick on the hydration and packing density of cement pastes. Revista IBRACON De Estruturas E Materiais, 2013, 6, 661-680.	0.6	6

#	Article	IF	CITATIONS
181	Deflection hardening of sustainable fiber–cement composites. Green Materials, 2016, 4, 18-30.	2.1	6
182	Effect of microcrystalline and microfibrillated cellulose on the evolution of hydration of cement pastes by thermogravimetry. Journal of Thermal Analysis and Calorimetry, 2020, 142, 1413-1428.	3.6	6
183	Potentiality of earth-based mortar containing bamboo particles for GHG emissions reduction. Construction and Building Materials, 2022, 317, 125971.	7.2	6
184	Assessment of bio-aggregate concretes' properties with rice residue. Journal of Building Engineering, 2022, 52, 104348.	3.4	6
185	CaracterÃsticas tecnológicas da Prosopis juliflora (Sw.) DC. e alternativas para o uso racional. Revista Brasileira De Engenharia Agricola E Ambiental, 2007, 11, 537-542.	1.1	5
186	Evaluation of magnesium sulphate attack in mortar-metakaolin system by thermal analysis. Journal of Thermal Analysis and Calorimetry, 2008, 94, 511-516.	3.6	5
187	Rio 2016 sustainable construction commitments lead to new developments in recycled aggregate concrete. Proceedings of the Institution of Civil Engineers: Civil Engineering, 2013, 166, 28-35.	0.3	5
188	Experimental and numerical analysis of short sisal fiber-cement composites produced with recycled matrix. European Journal of Environmental and Civil Engineering, 2019, 23, 70-84.	2.1	5
189	Effect of the Combination of Superabsorbent Polymers for Autogenous Shrinkage Control with Steel Fibers of High-Performance Concrete under Uniaxial Tension Using DIC. Materials, 2020, 13, 4638.	2.9	5
190	An Experimental and Environmental Evaluation of Mortars with Recycled Demolition Waste from a Hospital Implosion in Rio de Janeiro. Sustainability, 2020, 12, 8945.	3.2	5
191	Effect of plain and carboxylated styrene-butadiene rubber on the rheological behavior of silica fume-class G Portland cement slurries. Journal of Materials Research and Technology, 2020, 9, 5364-5377.	5.8	5
192	Static flexural behavior of bamboo as a functionally graded material and the effect of heat on dynamic flexural modulus. Journal of Building Engineering, 2021, 34, 101949.	3.4	5
193	Molecular grafting of nanoparticles onto sisal fibers - adhesion to cementitious matrices and novel functionalities. Journal of Molecular Structure, 2021, 1234, 130171.	3.6	5
194	Sisal textile reinforced concrete: Improving tensile strength and bonding through peeling and nano-silica treatment. Construction and Building Materials, 2021, 301, 124300.	7.2	5
195	Influência da pré-saturação do agregado miúdo reciclado na viscosidade e resistência à compressão de argamassas. Ambiente ConstruÃdo, 2014, 14, 85-98.	0.4	5
196	A multi-scale investigation of the mechanical behavior of durable sisal fiber cement composites. Revista Materia, 2010, 15, 338-344.	0.2	4
197	Efeito da argila calcinada sobre a durabilidade de argamassas reforçadas com fibras curtas de sisal. Revista Brasileira De Engenharia Agricola E Ambiental, 2010, 14, 1109-1114.	1.1	4
198	Limit Strength of New Sandwich Pipes With Strain Hardening Cementitious Composites (SHCC) Core: Finite Element Modelling. , 2012, , .		4

#	Article	IF	CITATIONS
199	Avaliação ambiental do sistema construtivo de alvenaria de blocos de solo-cimento considerando diferentes especificações de projeto. Gestão & Tecnologia De Projetos, 2021, 16, 149-172.	0.1	4
200	Cementitious Composites Reinforced with Natural Fibres. Research for Development, 2017, , 197-331.	0.4	4
201	Caracterização mecânica de laminados cimentÃceos esbeltos reforçados com fibras de sisal. Revista Brasileira De Engenharia Agricola E Ambiental, 2007, 11, 644-651.	1.1	4
202	Concrete vs. Ceramic Blocks: Environmental Impact Evaluation Considering a Country-Level Approach. World, 2021, 2, 482-504.	2.2	4
203	Self-healing of slag-cement ultra-high performance steel fiber reinforced concrete (UHPFRC) containing sisal fibers as healing conveyor. Journal of Building Engineering, 2022, 54, 104638.	3.4	4
204	TENSILE FATIGUE RESPONSE OF SISAL FIBER REINFORCED CEMENT COMPOSITES. , 2009, , 81-90.		3
205	A Comparative Study Between the Early Stages Hydration of a High Strength and Sulphate Resistant Portland Cement and the Type II F Portland Cement Through Non Conventional Differential Thermal Analysis and Thermogravimetry. Materials Research, 2015, 18, 291-296.	1.3	3
206	Comparison between methods to determine the fibre orientation factor of an HPFRC bridge box girder. Construction and Building Materials, 2021, 269, 121291.	7.2	3
207	Influence of UV-modified GTR on the properties of interlocking concrete paving units. Journal of Molecular Structure, 2021, 1234, 130110.	3.6	3
208	Anionic, Cationic, and Nonionic Surfactants Used as Dispersing Agents for Carbon Nanotubes and Their Effect on Cement Hydration. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	3
209	Basic Creep under Compression and Direct Tension Loads of Self-compacting-steel Fibers Reinforced Concrete. RILEM Bookseries, 2012, , 171-178.	0.4	3
210	Fiber Durability. RILEM State-of-the-Art Reports, 2017, , 59-78.	0.7	3
211	Evaluation of Mechanical Properties of Cement-Based Composites with Nanomaterials. , 2020, , 145-172.		3
212	Influence of High Temperatures on the Mechanical Properties of Wood Bio-Concretes. , 0, , .		3
213	Mechanical Properties of Hybrid PVA–Natural Curaua Fiber Composites. Materials, 2022, 15, 2808.	2.9	3
214	Behavior Under Compression and Bending Loads of Multi-Scale High Performance Steel Fiber Reinforced Cement Based Composites. , 2006, , 251-262.		2
215	Stress-Strain Behavior of Mortar Mixtures Containing Construction and Demolition Waste as Fine Aggregate. Key Engineering Materials, 0, 634, 300-306.	0.4	2
216	Technical viability of self-compacting concretes with by-products from crushed coarse aggregate production. REM: International Engineering Journal, 2016, 69, 265-271.	0.4	2

#	Article	IF	CITATIONS
217	Early carbonation curing effects on the microstructure of high initial strength Portland cement pastes. Advances in Cement Research, 2019, 31, 382-388.	1.6	2
218	Construction and demolition waste aggregates: analysis of the physical and mechanical properties of mortars. IOP Conference Series: Materials Science and Engineering, 2019, 652, 012016.	0.6	2
219	Coreâ€Shell System Based on Gelatin and Poly(Vinyl Alcohol) (PVA) for Concrete Selfâ€Healing Applications: Synthesis, Characterization, and Optimization. Macromolecular Symposia, 2021, 398, 2000194.	0.7	2
220	Internal Curing Water Effect of Superabsorbent Polymer on Microstructure of High-Performance Fine-Grained Concrete. ACI Materials Journal, 2021, 118, .	0.2	2
221	Effects of Freeze-Thaw and Wet-Dry Cycles on Tension Stiffening Behavior of Reinforced RAC Elements. Applied Sciences (Switzerland), 2021, 11, 10063.	2.5	2
222	Avaliação do potencial de mitigação das mudanças climáticas com o uso de colmos de bambu na construção civil brasileira. LALCA- Revista Latino Americana Em Avaliação Do Ciclo De Vida, 0, 4, e45188.	0.3	2
223	Modelling of tension stiffening effect in reinforced recycled concrete. Revista IBRACON De Estruturas E Materiais, 2020, 13, .	0.6	2
224	EXPERIMENTAL AND NUMERICAL ANALYSIS OF UHPFRC PLATES AND SHELLS. , 2006, , 49-58.		2
225	Physical, Thermal and Microstructural Characterization of Earth Mortars Stabilized with Incorporating Air Additive. , 0, , .		2
226	Durability of Bamboo Bio-Concretes Exposed to Natural Aging. , 0, , .		2
227	Modelagem computacional de vigas de concreto armado reforçado com fibras de aço submetidas a cisalhamento. Revista IBRACON De Estruturas E Materiais, 2010, 3, 68-94.	0.6	1
228	Self-Compacting and Conventional Concrete with Mineral Waste: Fresh and Hardened State Properties. Key Engineering Materials, 2012, 517, 547-555.	0.4	1
229	Mechanical Behavior of Jute Fiber-Cement Based Composites. Key Engineering Materials, 2012, 517, 469-476.	0.4	1
230	Uniaxial and Triaxial Stress-Strain Behaviour of Ductile Cement Pastes Reinforced With Wollastonite Microfibers. , 2013, , .		1
231	Hydration Properties of Cement Pastes with Recycled Demolition Waste from Clay Bricks and Concrete. RILEM Bookseries, 2015, , 591-591.	0.4	1
232	A study by NCDTA and TG of a coal power unit waste effects on the early hydration stages of Type II Portland cement. Journal of Thermal Analysis and Calorimetry, 2017, 129, 85-102.	3.6	1
233	Construção com terra no Brasil. PARC: Pesquisa Em Arquitetura E Construção, 0, 12, e021015.	0.3	1
234	Morphology and mechanical properties of unidirectional sisal– epoxy composites. Journal of Applied Polymer Science, 2002, 84, 2358-2365.	2.6	1

#	Article	IF	CITATIONS
235	Durability under Thermal Loads. , 2011, , 59-71.		1
236	Influence of Elevated Temperatures. RILEM State-of-the-Art Reports, 2017, , 109-118.	0.7	1
237	Influência das fibras de aço e das adições minerais na fissuração de tirantes de concreto armado. Revista IBRACON De Estruturas E Materiais, 2009, 2, 142-165.	0.6	0
238	Rheological Characterization and Mechanical Behavior of Polymer Powder Modified-Cement Pastes and Wollastonite Fibers Reinforced Cement Pastes. , 2012, , .		0
239	Effect of the Sodium and Potassium Chloride on the Mechanical and Plastic Properties on the Oil Well Cement Slurries. , 2012, , .		0
240	The Technical Viability of the Reuse of Recycled Concrete Aggregate (RCA) for the Production of Interlocking Concrete Paving. Applied Mechanics and Materials, 0, 433-435, 2134-2140.	0.2	0
241	Pozzolanic Reactions in Cementitious Materials for Subsurface Applications. , 2014, , .		0
242	Mechanical and Physical Properties of Early Carbonated High Initial Strength Portland Cement Pastes. Key Engineering Materials, 2014, 634, 467-472.	0.4	0
243	Numerical-Experimental Assessment of the Arumal f Fiber as Reinforcement to the Cementitious Matrix. Key Engineering Materials, 2014, 600, 460-468.	0.4	0
244	Influence of Short Polypropylene Fibers on the Toughness of High Performance Cement Slurries. , 2014, , .		0
245	Durability of Lightweight Slurries for Oilwell Cementing. Key Engineering Materials, 2016, 711, 203-210.	0.4	0
246	A Novel Conceptual Approach for Predicting the Mechanical Properties of Recycled Aggregate Concrete. Applied Mechanics and Materials, 0, 847, 156-165.	0.2	0
247	Inverse Identification of the Bond-Slip Law for Sisal Fibers in High-Performance Cementitious Matrices. Lecture Notes in Civil Engineering, 2018, , 58-70.	0.4	0
248	Behavior of oil well cement slurry systems aged in CO2-saturated water under high pressure and temperature. Journal of Thermal Analysis and Calorimetry, 2022, 147, 95-107.	3.6	0
249	Effect of pyraclostrobin on mulberry leaves nutrients, silkworm cocoon production and silk fiber performance. Revista Materia, 2021, 26, .	0.2	0
250	Mecanismo de atuação dos PolÃmeros Superabsorventes como agentes de cura interna para mitigar a retração autógena em Concretos de Alta Resistência (CAR) – Estado da Arte. Revista Materia, 2021, 26, .	0.2	0
251	Autogenous Shrinkage in Structural Concrete Made with Recycled Concrete Aggregates. RILEM Bookseries, 2021, , 111-120.	0.4	0
252	Novel Coreâ€Shell System Based on Gelatin and Hydrophilic Polymers Useful as Concrete Selfâ€healing Systems. Macromolecular Symposia, 2021, 398, 2000180.	0.7	0

#	Article	IF	CITATIONS
253	Plasticizers as Dispersants for Carbon Nanotubes in Self-sensing Cement Composites. RILEM Bookseries, 2021, , 341-352.	0.4	0
254	Modelling Pore Continuity and Durability of Cementitious Sealing Material. , 2012, , .		0
255	MECANISMO DE FISSURAÇAO SOB TRAÇÃO DIRETA DE COMPÓSITOS CIMENTÀIOS REFORÇADOS COM FIBRAS CURTAS DE SISAL. Engevista, 2013, 15, 95.	0.1	0
256	Modeling Pozzolanic Systems for Subsurface Cementitious Systems. , 2013, , .		0
257	Generalised Mix Design Rules for Concrete with Recycled Aggregates. Research for Development, 2017, , 123-134.	0.4	0
258	Rheological Behavior at Fresh State of Structural Recycled Aggregate Concrete. , 2018, , 215-223.		0
259	The Influence of Recycled Concrete and Clay Brick Particles on the Strength and Porosity of Cement-Based Pastes. RILEM Bookseries, 2018, , 189-194.	0.4	0
260	Influência de agregados reciclados de concreto na reologia do concreto. , 0, , .		0
261	Influence of NaCl and KCl addition on the thermal properties of cement pastes. Technical Papers Rio Oil & Gas, 2020, 20, 124-125.	0.0	0
262	Production of magnetic nanoparticles modified with silica for application in oil and gas industry. Technical Papers Rio Oil & Gas, 2020, 20, 102-103.	0.0	0
263	Effect of inductive heating on the properties of a cement slurry blended with magnetic iron oxide nanoparticles. Technical Papers Rio Oil & Gas, 2020, 20, 101-102.	0.0	Ο
264	Mitigation of autogenous shrinkage in high-strength concrete by use of rice husk ashes with distinct porous structures. Advances in Cement Research, 0, , 1-26.	1.6	0
265	Development of GHG Emissions Curves for Bio-Concretes Specification: Case Study for Bamboo, Rice Husk, and Wood Shavings Considering the Context of Different Countries. , 0, , .		0
266	Evaluation of Bio-Based Earth Engineered Mortars for Low Energy and Carbon Buildings in Tropical and Subtropical Climates. , 0, , .		0
267	Inserção da ACV no processo de projeto de edificações: avaliação de alternativas e ferramentas computacionais para a prática de mercado. Paranoá: Cadernos De Arquitetura E Urbanismo, 2020, , .	0.0	0
268	Compósito trifásico baseado em resÃduo de goma de mascar-sbr e partÃculas de quartzo. Revista Materia, 2021, 26, .	0.2	0
269	Environmental Performance of Wood Bioconcretes with Different Wood Shavings Treatments. , 0, , .		0
270	Earth-Based Mortars: Mix Design, Mechanical Characterization and Environmental Performance Assessment. , 0, , .		0

16

#	Article	IF	CITATIONS
271	Evaluation of GHG Emissions from the Production of Cross-Laminated Timber (CLT): Analysis of Different Life Cycle Inventories. , 0, , .		0