Dmitri A Petrov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4150638/publications.pdf

Version: 2024-02-01

152 papers

17,269 citations

64 h-index 20961 115 g-index

204 all docs

204 docs citations

times ranked

204

17382 citing authors

#	Article	IF	CITATIONS
1	Adaptive Evolution of Pelvic Reduction in Sticklebacks by Recurrent Deletion of a <i>Pitx1</i> Enhancer. Science, 2010, 327, 302-305.	12.6	901
2	Selection on Codon Bias. Annual Review of Genetics, 2008, 42, 287-299.	7.6	827
3	High Functional Diversity in Mycobacterium tuberculosis Driven by Genetic Drift and Human Demography. PLoS Biology, 2008, 6, e311.	5.6	507
4	Genomic Evidence of Rapid and Stable Adaptive Oscillations over Seasonal Time Scales in Drosophila. PLoS Genetics, 2014, 10, e1004775.	3.5	473
5	Population genomics of rapid adaptation by soft selective sweeps. Trends in Ecology and Evolution, 2013, 28, 659-669.	8.7	471
6	The Large Genome Constraint Hypothesis: Evolution, Ecology and Phenotype. Annals of Botany, 2005, 95, 177-190.	2.9	429
7	Recent Selective Sweeps in North American Drosophila melanogaster Show Signatures of Soft Sweeps. PLoS Genetics, 2015, 11, e1005004.	3.5	392
8	Evidence That Mutation Is Universally Biased towards AT in Bacteria. PLoS Genetics, 2010, 6, e1001115.	3.5	386
9	Evolution of genome size: new approaches to an old problem. Trends in Genetics, 2001, 17, 23-28.	6.7	378
10	High intrinsic rate of DNA loss in Drosophila. Nature, 1996, 384, 346-349.	27.8	374
11	Quantitative evolutionary dynamics using high-resolution lineage tracking. Nature, 2015, 519, 181-186.	27.8	372
12	Precise estimates of mutation rate and spectrum in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2310-8.	7.1	362
13	Pervasive Natural Selection in the Drosophila Genome?. PLoS Genetics, 2009, 5, e1000495.	3.5	329
14	Viruses are a dominant driver of protein adaptation in mammals. ELife, 2016, 5, .	6.0	267
15	Evidence that Adaptation in Drosophila Is Not Limited by Mutation at Single Sites. PLoS Genetics, 2010, 6, e1000924.	3.5	255
16	Mutational Equilibrium Model of Genome Size Evolution. Theoretical Population Biology, 2002, 61, 531-544.	1.1	231
17	Frequent adaptation and the McDonald–Kreitman test. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8615-8620.	7.1	231
18	Pesticide Resistance via Transposition-Mediated Adaptive Gene Truncation in Drosophila. Science, 2005, 309, 764-767.	12.6	226

#	Article	IF	CITATIONS
19	Host Species and Environmental Effects on Bacterial Communities Associated with Drosophila in the Laboratory and in the Natural Environment. PLoS ONE, 2013, 8, e70749.	2.5	216
20	Size Matters: Non-LTR Retrotransposable Elements and Ectopic Recombination in Drosophila. Molecular Biology and Evolution, 2003, 20, 880-892.	8.9	208
21	Development of a Comprehensive Genotype-to-Fitness Map of Adaptation-Driving Mutations in Yeast. Cell, 2016, 166, 1585-1596.e22.	28.9	205
22	General Rules for Optimal Codon Choice. PLoS Genetics, 2009, 5, e1000556.	3.5	203
23	Genome-wide signals of positive selection in human evolution. Genome Research, 2014, 24, 885-895.	5.5	200
24	Strong Purifying Selection at Synonymous Sites in D. melanogaster. PLoS Genetics, 2013, 9, e1003527.	3.5	187
25	Pervasive and Persistent Redundancy among Duplicated Genes in Yeast. PLoS Genetics, 2008, 4, e1000113.	3.5	181
26	Illumina TruSeq Synthetic Long-Reads Empower De Novo Assembly and Resolve Complex, Highly-Repetitive Transposable Elements. PLoS ONE, 2014, 9, e106689.	2.5	180
27	High Rate of Recent Transposable Element–Induced Adaptation in Drosophila melanogaster. PLoS Biology, 2008, 6, e251.	5.6	176
28	Heterozygote advantage as a natural consequence of adaptation in diploids. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20666-20671.	7.1	174
29	Evidence of Selection against Complex Mitotic-Origin Aneuploidy during Preimplantation Development. PLoS Genetics, 2015, 11, e1005601.	3.5	170
30	Evidence that RNA Viruses Drove Adaptive Introgression between Neanderthals and Modern Humans. Cell, 2018, 175, 360-371.e13.	28.9	164
31	Population Genomics of Transposable Elements in Drosophila melanogaster. Molecular Biology and Evolution, 2011, 28, 1633-1644.	8.9	160
32	Secondary contact and local adaptation contribute to genomeâ€wide patterns of clinal variation in ⟨i⟩Drosophila melanogaster⟨ i⟩. Molecular Ecology, 2016, 25, 1157-1174.	3.9	149
33	Population Genomics of Transposable Elements in <i>Drosophila</i> . Annual Review of Genetics, 2014, 48, 561-581.	7.6	144
34	Drosophila melanogaster recombination rate calculator. Gene, 2010, 463, 18-20.	2.2	142
35	Imperfect drug penetration leads to spatial monotherapy and rapid evolution of multidrug resistance. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2874-83.	7.1	142
36	The mode and tempo of genome size evolution in eukaryotes. Genome Research, 2007, 17, 594-601.	5. 5	140

#	Article	IF	Citations
37	Genome-Wide Patterns of Adaptation to Temperate Environments Associated with Transposable Elements in Drosophila. PLoS Genetics, 2010, 6, e1000905.	3.5	137
38	High sensitivity to aligner and high rate of false positives in the estimates of positive selection in the 12 <i>Drosophila </i> i> genomes. Genome Research, 2011, 21, 863-874.	5.5	137
39	Pervasive Hitchhiking at Coding and Regulatory Sites in Humans. PLoS Genetics, 2009, 5, e1000336.	3.5	134
40	DNA loss and evolution of genome size in Drosophila. Genetica, 2002, 115, 81-91.	1.1	133
41	Widespread introgression across a phylogeny of 155 Drosophila genomes. Current Biology, 2022, 32, 111-123.e5.	3.9	132
42	Effects of maternal age on euploidy rates inÂa large cohort of embryos analyzedÂwith 24-chromosome single-nucleotide polymorphism–based preimplantation genetic screening. Fertility and Sterility, 2016, 105, 1307-1313.	1.0	131
43	Whole Genome Analysis of 132 Clinical <i>Saccharomyces cerevisiae</i> Ploidy Variation. G3: Genes, Genomes, Genetics, 2016, 6, 2421-2434.	1.8	129
44	Comparative population genomics of latitudinal variation in <i>Drosophila simulans</i> and <i>Drosophila melanogaster</i> Molecular Ecology, 2016, 25, 723-740.	3.9	128
45	Quantification of GC-biased gene conversion in the human genome. Genome Research, 2015, 25, 1215-1228.	5.5	127
46	Characterization of bacteriophage P1 library containing inserts of Drosophila DNA of 75?100 kilobase pairs. Chromosoma, 1991, 100, 487-494.	2.2	117
47	Genomewide Spatial Correspondence Between Nonsynonymous Divergence and Neutral Polymorphism Reveals Extensive Adaptation in Drosophila. Genetics, 2007, 177, 2083-2099.	2.9	115
48	Evolutionary Biology for the 21st Century. PLoS Biology, 2013, 11, e1001466.	5.6	115
49	Rates of DNA Duplication and Mitochondrial DNA Insertion in the Human Genome. Journal of Molecular Evolution, 2003, 57, 343-354.	1.8	112
50	Genomic Gigantism: DNA Loss Is Slow in Mountain Grasshoppers. Molecular Biology and Evolution, 2001, 18, 246-253.	8.9	111
51	Origins and rates of aneuploidy inÂhuman blastomeres. Fertility and Sterility, 2012, 97, 395-401.	1.0	110
52	Highly contiguous assemblies of 101 drosophilid genomes. ELife, 2021, 10, .	6.0	108
53	Common variants spanning <i>PLK4</i> are associated with mitotic-origin aneuploidy in human embryos. Science, 2015, 348, 235-238.	12.6	106
54	A quantitative and multiplexed approach to uncover the fitness landscape of tumor suppression in vivo. Nature Methods, 2017, 14, 737-742.	19.0	105

#	Article	IF	Citations
55	Microbiome composition shapes rapid genomic adaptation of <i>Drosophila melanogaster </i> Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20025-20032.	7.1	103
56	Mapping the in vivo fitness landscape of lung adenocarcinoma tumor suppression in mice. Nature Genetics, 2018, 50, 483-486.	21.4	101
57	Relaxed Purifying Selection and Possibly High Rate of Adaptation in Primate Lineage-Specific Genes. Genome Biology and Evolution, 2010, 2, 393-409.	2.5	100
58	Seasonally fluctuating selection can maintain polymorphism at many loci via segregation lift. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9932-E9941.	7.1	100
59	Distinct Changes of Genomic Biases in Nucleotide Substitution at the Time of Mammalian Radiation. Molecular Biology and Evolution, 2003, 20, 1887-1896.	8.9	95
60	Do disparate mechanisms of duplication add similar genes to the genome?. Trends in Genetics, 2005, 21, 548-551.	6.7	91
61	Elevated evolutionary rates in the laboratory strain of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1092-1097.	7.1	90
62	Genomic Heterogeneity of Background Substitutional Patterns in Drosophila melanogaster. Genetics, 2005, 169, 709-722.	2.9	90
63	LDx: Estimation of Linkage Disequilibrium from High-Throughput Pooled Resequencing Data. PLoS ONE, 2012, 7, e48588.	2.5	88
64	Substantial Regional Variation in Substitution Rates in the Human Genome: Importance of GC Content, Gene Density, and Telomere-Specific Effects. Journal of Molecular Evolution, 2005, 60, 748-763.	1.8	85
65	Empirical Validation of Pooled Whole Genome Population Re-Sequencing in Drosophila melanogaster. PLoS ONE, 2012, 7, e41901.	2.5	84
66	The adaptive role of transposable elements in the Drosophila genome. Gene, 2009, 448, 124-133.	2.2	82
67	Rapid seasonal evolution in innate immunity of wild <i>Drosophila melanogaster</i> . Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172599.	2.6	82
68	Multiplexed in vivo homology-directed repair and tumor barcoding enables parallel quantification of Kras variant oncogenicity. Nature Communications, 2017, 8, 2053.	12.8	78
69	The AMBRA1 E3 ligase adaptor regulates the stability of cyclinÂD. Nature, 2021, 592, 794-798.	27.8	76
70	Direct observation of adaptive tracking on ecological time scales in <i>Drosophila</i> . Science, 2022, 375, eabj7484.	12.6	71
71	More effective drugs lead to harder selective sweeps in the evolution of drug resistance in HIV-1. ELife, 2016, 5, .	6.0	70
72	Soft Selective Sweeps in Complex Demographic Scenarios. Genetics, 2014, 198, 669-684.	2.9	69

#	Article	IF	Citations
73	Fitness variation across subtle environmental perturbations reveals local modularity and global pleiotropy of adaptation. ELife, 2020, 9, .	6.0	69
74	Broker Genes in Human Disease. Genome Biology and Evolution, 2010, 2, 815-825.	2.5	68
75	Trash DNA is what gets thrown away: high rate of DNA loss in Drosophila. Gene, 1997, 205, 279-289.	2.2	67
76	Broad geographic sampling reveals the shared basis and environmental correlates of seasonal adaptation in Drosophila. ELife, $2021,10,10$	6.0	66
77	Reduced selection leads to accelerated gene loss in Shigella. Genome Biology, 2007, 8, R164.	9.6	64
78	Stress response, behavior, and development are shaped by transposable element-induced mutations in Drosophila. PLoS Genetics, 2019, 15, e1007900.	3.5	64
79	Hidden Complexity of Yeast Adaptation under Simple Evolutionary Conditions. Current Biology, 2018, 28, 515-525.e6.	3.9	63
80	T-lex2: genotyping, frequency estimation and re-annotation of transposable elements using single or pooled next-generation sequencing data. Nucleic Acids Research, 2015, 43, e22-e22.	14.5	61
81	X-Linked Genes Evolve Higher Codon Bias in Drosophila and Caenorhabditis. Genetics, 2005, 171, 145-155.	2.9	60
82	Single nucleotide mapping of trait space reveals Pareto fronts that constrain adaptation. Nature Ecology and Evolution, 2019, 3, 1539-1551.	7.8	60
83	Global Transcriptional Profiling of Diapause and Climatic Adaptation in <i>Drosophila melanogaster</i> i>. Molecular Biology and Evolution, 2016, 33, 707-720.	8.9	59
84	Genetic Determinants of EGFR-Driven Lung Cancer Growth and Therapeutic Response <i>In Vivo</i> Cancer Discovery, 2021, 11, 1736-1753.	9.4	59
85	A Recent Adaptive Transposable Element Insertion Near Highly Conserved Developmental Loci in Drosophila melanogaster. Molecular Biology and Evolution, 2009, 26, 1949-1961.	8.9	58
86	Tripolar chromosome segregation drives the association between maternal genotype at variants spanning PLK4 and aneuploidy in human preimplantation embryos. Human Molecular Genetics, 2018, 27, 2573-2585.	2.9	55
87	A combined molecular and cytogenetic approach to genome evolution in Drosophila using large-fragment DNA cloning. Chromosoma, 1993, 102, 253-266.	2.2	54
88	Protein Evolution in the Context of Drosophila Development. Journal of Molecular Evolution, 2005, 60, 774-785.	1.8	54
89	Paucity of chimeric gene-transposable element transcripts in the Drosophila melanogaster genome. BMC Biology, 2005, 3, 24.	3.8	54
90	A repetitive DNA element, associated with telomeric sequences in Drosophila melanogaster, contains open reading frames. Chromosoma, 1992, 102, 32-40.	2.2	53

#	Article	IF	Citations
91	T-lex: a program for fast and accurate assessment of transposable element presence using next-generation sequencing data. Nucleic Acids Research, 2011, 39, e36-e36.	14.5	53
92	Codon Bias and Noncoding GC Content Correlate Negatively with Recombination Rate on the Drosophila X Chromosome. Journal of Molecular Evolution, 2005, 61, 315-324.	1.8	50
93	Rapid Sequence Turnover at an Intergenic Locus in Drosophila. Molecular Biology and Evolution, 2004, 21, 670-680.	8.9	48
94	Comparative population genomics: power and principles for the inference of functionality. Trends in Genetics, 2014, 30, 133-139.	6.7	48
95	Transposable elements in clonal lineages: lethal hangover from sex. Biological Journal of the Linnean Society, 2003, 79, 33-41.	1.6	46
96	Similar Levels of X-linked and Autosomal Nucleotide Variation in African and non-African populations of Drosophila melanogaster. BMC Evolutionary Biology, 2007, 7, 202.	3.2	46
97	Human–chimpanzee fused cells reveal cis-regulatory divergence underlying skeletal evolution. Nature Genetics, 2021, 53, 467-476.	21.4	46
98	Similarly Strong Purifying Selection Acts on Human Disease Genes of All Evolutionary Ages. Genome Biology and Evolution, 2009, 1, 131-144.	2.5	45
99	Deep sequencing of natural and experimental populations of <i>Drosophila melanogaster</i> reveals biases in the spectrum of new mutations. Genome Research, 2017, 27, 1988-2000.	5.5	45
100	Elevated Linkage Disequilibrium and Signatures of Soft Sweeps Are Common in <i>Drosophila melanogaster</i> . Genetics, 2016, 203, 863-880.	2.9	44
101	Exploiting selection at linked sites to infer the rate and strength of adaptation. Nature Ecology and Evolution, 2019, 3, 977-984.	7.8	43
102	Pervasive Strong Selection at the Level of Codon Usage Bias in <i>Drosophila melanogaster</i> Genetics, 2020, 214, 511-528.	2.9	42
103	Evolution of Genome Content: Population Dynamics of Transposable Elements in Flies and Humans. Methods in Molecular Biology, 2012, 855, 361-383.	0.9	41
104	Soft Selective Sweeps in Evolutionary Rescue. Genetics, 2017, 205, 1573-1586.	2.9	41
105	Genomic inference accurately predicts the timing and severity of a recent bottleneck in a nonmodel insect population. Molecular Ecology, 2014, 23, 136-150.	3.9	40
106	Empowering conservation practice with efficient and economical genotyping from poor quality samples. Methods in Ecology and Evolution, 2019, 10, 853-859.	5.2	40
107	Heterozygote Advantage Is a Common Outcome of Adaptation in <i>Saccharomyces cerevisiae</i> Genetics, 2016, 203, 1401-1413.	2.9	38
108	High rate of adaptation of mammalian proteins that interact with Plasmodium and related parasites. PLoS Genetics, 2017, 13, e1007023.	3.5	37

#	Article	IF	Citations
109	Tissue-Specific cis-Regulatory Divergence Implicates eloF in Inhibiting Interspecies Mating in Drosophila. Current Biology, 2018, 28, 3969-3975.e3.	3.9	37
110	Ancient RNA virus epidemics through the lens of recent adaptation in human genomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190575.	4.0	37
111	<i>Drosophila</i> Evolution over Space and Time (DEST): A New Population Genomics Resource. Molecular Biology and Evolution, 2021, 38, 5782-5805.	8.9	37
112	Enhancer Choice in Cis and in Trans in Drosophila melanogaster. Genetics, 2004, 167, 1739-1747.	2.9	36
113	The cis-regulatory effects of modern human-specific variants. ELife, 2021, 10, .	6.0	36
114	Recent Evolutionary History of Tigers Highlights Contrasting Roles of Genetic Drift and Selection. Molecular Biology and Evolution, 2021, 38, 2366-2379.	8.9	35
115	A Functional Taxonomy of Tumor Suppression in Oncogenic KRAS–Driven Lung Cancer. Cancer Discovery, 2021, 11, 1754-1773.	9.4	35
116	Detection of hard and soft selective sweeps from Drosophila melanogaster population genomic data. PLoS Genetics, 2021, 17, e1009373.	3.5	35
117	Obstruction of adaptation in diploids by recessive, strongly deleterious alleles. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2658-66.	7.1	34
118	Long live the king: chromosome-level assembly of the lion (Panthera leo) using linked-read, Hi-C, and long-read data. BMC Biology, 2020, 18, 3.	3.8	34
119	Functional biology in its natural context: A search for emergent simplicity. ELife, 2021, 10, .	6.0	34
120	An Intrinsically Disordered Region of the DNA Repair Protein Nbs1 Is a Species-Specific Barrier to Herpes Simplex Virus 1 in Primates. Cell Host and Microbe, 2016, 20, 178-188.	11.0	33
121	Spatiotemporal dynamics and genomeâ€wide association analysis of desiccation tolerance in <i>Drosophila melanogaster</i>). Molecular Ecology, 2018, 27, 3525-3540.	3.9	33
122	Faster than Neutral Evolution of Constrained Sequences: The Complex Interplay of Mutational Biases and Weak Selection. Genome Biology and Evolution, 2011, 3, 383-395.	2.5	30
123	Accurate Allele Frequencies from Ultra-low Coverage Pool-Seq Samples in Evolve-and-Resequence Experiments. G3: Genes, Genomes, Genetics, 2019, 9, 4159-4168.	1.8	29
124	Inferring the Strength of Selection in Drosophila under Complex Demographic Models. Molecular Biology and Evolution, 2008, 26, 513-526.	8.9	28
125	The clarifying role of time series data in the population genetics of HIV. PLoS Genetics, 2021, 17, e1009050.	3.5	26
126	A spatio-temporal assessment of simian/human immunodeficiency virus (SHIV) evolution reveals a highly dynamic process within the host. PLoS Pathogens, 2017, 13, e1006358.	4.7	25

#	Article	IF	Citations
127	Evolutionary Dynamics in Structured Populations Under Strong Population Genetic Forces. G3: Genes, Genomes, Genetics, 2019, 9, 3395-3407.	1.8	23
128	Cost-effective assembly of the African wild dog (<i>Lycaon pictus</i>) genome using linked reads. GigaScience, 2019, 8, .	6.4	22
129	Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia. Nature Neuroscience, 2021, 24, 186-196.	14.8	22
130	How Intron Splicing Affects the Deletion and Insertion Profile in <i>Drosophila melanogaster</i> Genetics, 2002, 162, 1233-1244.	2.9	22
131	Nonadaptive Explanations for Signatures of Partial Selective Sweeps in Drosophila. Molecular Biology and Evolution, 2008, 25, 1025-1042.	8.9	21
132	Genome size as a mutation-selection-drift process Genes and Genetic Systems, 1999, 74, 201-207.	0.7	19
133	Minor shift in background substitutional patterns in the Drosophila saltans and willistoni lineages is insufficient to explain GC content of coding sequences. BMC Biology, 2006, 4, 37.	3.8	17
134	MITEs—The Ultimate Parasites. Science, 2009, 325, 1352-1353.	12.6	17
135	Common host variation drives malaria parasite fitness in healthy human red cells. ELife, 2021, 10, .	6.0	17
136	On the Limitations of Using Ribosomal Genes as References for the Study of Codon Usage: A Rebuttal. PLoS ONE, 2012, 7, e49060.	2.5	17
137	The $\langle i \rangle$ Tetragnatha kauaiensis $\langle i \rangle$ Genome Sheds Light on the Origins of Genomic Novelty in Spiders. Genome Biology and Evolution, 2021, 13, .	2.5	16
138	Molecular Evolution of the Testis TAFs of Drosophila. Molecular Biology and Evolution, 2009, 26, 1103-1116.	8.9	15
139	Extremely Rare Polymorphisms in Saccharomyces cerevisiae Allow Inference of the Mutational Spectrum. PLoS Genetics, 2017, 13, e1006455.	3.5	13
140	Genetic Adaptation in New York City Rats. Genome Biology and Evolution, 2021, 13, .	2.5	13
141	Quantitative <i>In Vivo</i> Analyses Reveal a Complex Pharmacogenomic Landscape in Lung Adenocarcinoma. Cancer Research, 2021, 81, 4570-4580.	0.9	13
142	Slow but Steady: Reduction of Genome Size through Biased Mutation [with Reply]. Plant Cell, 1997, 9, 1900.	6.6	10
143	A Novel Method Distinguishes Between Mutation Rates and Fixation Biases in Patterns of Single-Nucleotide Substitution. Journal of Molecular Evolution, 2006, 62, 168-175.	1.8	10
144	Historical trends and new surveillance of Plasmodium falciparum drug resistance markers in Angola. Malaria Journal, 2021, 20, 175.	2.3	7

#	Article	lF	CITATIONS
145	Combinatorial Inactivation of Tumor Suppressors Efficiently Initiates Lung Adenocarcinoma with Therapeutic Vulnerabilities. Cancer Research, 2022, 82, 1589-1602.	0.9	7
146	Revisiting the malaria hypothesis: accounting for polygenicity and pleiotropy. Trends in Parasitology, 2022, 38, 290-301.	3.3	5
147	Richard C. Lewontin (1929–2021). Science, 2021, 373, 745-745.	12.6	2
148	Seeking Goldilocks During Evolution of Drug Resistance. PLoS Biology, 2017, 15, e2001872.	5.6	2
149	Reply to Chen and Zhang: On interpreting genome-wide trends from yeast mutation accumulation data. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4063-E4063.	7.1	0
150	Common variants associated with mitotic-origin of aneuploidy in human embryos. Reproductive BioMedicine Online, 2018, 36, e1.	2.4	0
151	SNP genotyping to monitor wild tigers for conservation. Canadian Journal of Biotechnology, 2017, 1, 19-19.	0.3	0
152	Tumor suppressor pathways shape EGFR-driven lung tumor progression and response to treatment. Molecular and Cellular Oncology, 2022, 9, 1994328.	0.7	0