Joanne Chory

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4150610/publications.pdf Version: 2024-02-01

163
g-index
22404
citing authors

#	Article	IF	CITATIONS
1	A Putative Leucine-Rich Repeat Receptor Kinase Involved in Brassinosteroid Signal Transduction. Cell, 1997, 90, 929-938.	28.9	1,516
2	Activation Tagging of the Floral Inducer FT. Science, 1999, 286, 1962-1965.	12.6	1,311
3	BES1 Accumulates in the Nucleus in Response to Brassinosteroids to Regulate Gene Expression and Promote Stem Elongation. Cell, 2002, 109, 181-191.	28.9	1,124
4	A Role for Flavin Monooxygenase-Like Enzymes in Auxin Biosynthesis. Science, 2001, 291, 306-309.	12.6	1,075
5	Nuclear-Localized BZR1 Mediates Brassinosteroid-Induced Growth and Feedback Suppression of Brassinosteroid Biosynthesis. Developmental Cell, 2002, 2, 505-513.	7.0	967
6	Rapid Synthesis of Auxin via a New Tryptophan-Dependent Pathway Is Required for Shade Avoidance in Plants. Cell, 2008, 133, 164-176.	28.9	928
7	Activation Tagging in Arabidopsis. Plant Physiology, 2000, 122, 1003-1014.	4.8	896
8	Different Plant Hormones Regulate Similar Processes through Largely Nonoverlapping Transcriptional Responses. Cell, 2006, 126, 467-475.	28.9	859
9	Light Signal Transduction in Higher Plants. Annual Review of Genetics, 2004, 38, 87-117.	7.6	843
10	BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature, 2001, 410, 380-383.	27.8	743
11	A New Class of Transcription Factors Mediates Brassinosteroid-Regulated Gene Expression in Arabidopsis. Cell, 2005, 120, 249-259.	28.9	709
12	dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications inArabidopsis thalianagenetics. Plant Journal, 1998, 14, 387-392.	5.7	670
13	Signals from chloroplasts converge to regulate nuclear gene expression. Science, 2007, 316, 715-9.	12.6	638
14	Signal transduction mutants of arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell, 1993, 74, 787-799.	28.9	589
15	Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF <i>ARABIDOPSIS</i> and YUCCAs in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18518-18523.	7.1	580
16	Coordination of gene expression between organellar and nuclear genomes. Nature Reviews Genetics, 2008, 9, 383-395.	16.3	574
17	Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature, 2005, 433, 167-171.	27.8	555
18	PLASTID-TO-NUCLEUS RETROGRADE SIGNALING. Annual Review of Plant Biology, 2006, 57, 739-759.	18.7	509

#	Article	IF	CITATIONS
19	Interdependency of Brassinosteroid and Auxin Signaling in Arabidopsis. PLoS Biology, 2004, 2, e258.	5.6	499
20	BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development (Cambridge), 2004, 131, 5341-5351.	2.5	495
21	GUN4, a Regulator of Chlorophyll Synthesis and Intracellular Signaling. Science, 2003, 299, 902-906.	12.6	478
22	Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell, 1989, 58, 991-999.	28.9	475
23	Genetic Interactions between Phytochrome A, Phytochrome B, and Cryptochrome 1 during Arabidopsis Development1. Plant Physiology, 1998, 118, 27-35.	4.8	474
24	Network Discovery Pipeline Elucidates Conserved Time-of-Day–Specific cis-Regulatory Modules. PLoS Genetics, 2008, 4, e14.	3.5	474
25	Regulation of flowering time by light quality. Nature, 2003, 423, 881-885.	27.8	464
26	Linking photoreceptor excitation to changes in plant architecture. Genes and Development, 2012, 26, 785-790.	5.9	460
27	Brassinosteroids Regulate Dissociation of BKI1, a Negative Regulator of BRI1 Signaling, from the Plasma Membrane. Science, 2006, 313, 1118-1122.	12.6	459
28	Cryptochromes Interact Directly with PIFs to Control Plant Growth in Limiting Blue Light. Cell, 2016, 164, 233-245.	28.9	445
29	Brassinosteroid-Insensitive-1 Is a Ubiquitously Expressed Leucine-Rich Repeat Receptor Serine/Threonine Kinase. Plant Physiology, 2000, 123, 1247-1256.	4.8	440
30	LIGHT CONTROL OF PLANT DEVELOPMENT. Annual Review of Cell and Developmental Biology, 1997, 13, 203-229.	9.4	439
31	Perception of Brassinosteroids by the Extracellular Domain of the Receptor Kinase BRI1. Science, 2000, 288, 2360-2363.	12.6	439
32	BIN2, a New Brassinosteroid-Insensitive Locus in Arabidopsis. Plant Physiology, 2001, 127, 14-22.	4.8	432
33	PKS1, a Substrate Phosphorylated by Phytochrome That Modulates Light Signaling in Arabidopsis. Science, 1999, 284, 1539-1541.	12.6	426
34	The extent of linkage disequilibrium in Arabidopsis thaliana. Nature Genetics, 2002, 30, 190-193.	21.4	425
35	The epidermis both drives and restricts plant shoot growth. Nature, 2007, 446, 199-202.	27.8	385
36	Phytochrome signaling mechanisms and the control of plant development. Trends in Cell Biology, 2011, 21, 664-671.	7.9	370

#	Article	IF	CITATIONS
37	MOLECULAR MECHANISMS OF STEROID HORMONE SIGNALING IN PLANTS. Annual Review of Cell and Developmental Biology, 2005, 21, 177-201.	9.4	369
38	Downstream nuclear events in brassinosteroid signalling. Nature, 2006, 441, 96-100.	27.8	353
39	Endosomal signaling of plant steroid receptor kinase BRI1. Genes and Development, 2007, 21, 1598-1602.	5.9	349
40	Large-Scale Identification of Single-Feature Polymorphisms in Complex Genomes. Genome Research, 2003, 13, 513-523.	5.5	345
41	Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes and Development, 2004, 18, 448-460.	5.9	341
42	Structural basis of steroid hormone perception by the receptor kinase BRI1. Nature, 2011, 474, 467-471.	27.8	340
43	DET1, a negative regulator of light-mediated development and gene expression in arabidopsis, encodes a novel nuclear-localized protein. Cell, 1994, 78, 109-116.	28.9	304
44	Brassinosteroid perception in the epidermis controls root meristem size. Development (Cambridge), 2011, 138, 839-848.	2.5	302
45	An Arabidopsis Mutant Defective in the Plastid General Protein Import Apparatus. , 1998, 282, 100-103.		301
46	Modulation of brassinosteroid-regulated gene expression by jumonji domain-containing proteins ELF6 and REF6 in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7618-7623.	7.1	296
47	Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 297-302.	7.1	287
48	Heme Synthesis by Plastid Ferrochelatase I Regulates Nuclear Gene Expression in Plants. Current Biology, 2011, 21, 897-903.	3.9	284
49	Natural variation in light sensitivity of Arabidopsis. Nature Genetics, 2001, 29, 441-446.	21.4	261
50	Unraveling the paradoxes of plant hormone signaling integration. Nature Structural and Molecular Biology, 2010, 17, 642-645.	8.2	258
51	Autoregulation and Homodimerization Are Involved in the Activation of the Plant Steroid Receptor BRI1. Developmental Cell, 2005, 8, 855-865.	7.0	257
52	The Phosphoenolpyruvate/Phosphate Translocator Is Required for Phenolic Metabolism, Palisade Cell Development, and Plastid-Dependent Nuclear Gene Expression. Plant Cell, 1999, 11, 1609-1621.	6.6	255
53	Molecular Mechanism of Action of Plant DRM De Novo DNA Methyltransferases. Cell, 2014, 157, 1050-1060.	28.9	245
54	An histidine covalent receptor and butenolide complex mediates strigolactone perception. Nature Chemical Biology, 2016, 12, 787-794.	8.0	244

#	Article	IF	CITATIONS
55	Chemical Inhibition of a Subset of Arabidopsis thaliana GSK3-like Kinases Activates Brassinosteroid Signaling. Chemistry and Biology, 2009, 16, 594-604.	6.0	240
56	Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase inhibitor. Genes and Development, 2011, 25, 232-237.	5.9	236
57	Arabidopsis MYB30 is a direct target of BES1 and cooperates with BES1 to regulate brassinosteroidâ€induced gene expression. Plant Journal, 2009, 58, 275-286.	5.7	228
58	Cryptochrome 1 and phytochrome B control shadeâ€avoidance responses in Arabidopsis via partially independent hormonal cascades. Plant Journal, 2011, 67, 195-207.	5.7	223
59	Arabidopsis HEMERA/pTAC12 Initiates Photomorphogenesis by Phytochromes. Cell, 2010, 141, 1230-1240.	28.9	210
60	De-Etiolated 1 and Damaged DNA Binding Protein 1 Interact to Regulate Arabidopsis Photomorphogenesis. Current Biology, 2002, 12, 1462-1472.	3.9	203
61	A Morning-Specific Phytohormone Gene Expression Program underlying Rhythmic Plant Growth. PLoS Biology, 2008, 6, e225.	5.6	197
62	Signals from Chloroplasts Converge to Regulate Nuclear Gene Expression. Science, 2007, 316, 715-719.	12.6	196
63	NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism. Nature, 2015, 520, 679-682.	27.8	195
64	The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of Arabidopsis thaliana. Nature Genetics, 2006, 38, 711-715.	21.4	191
65	Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2460-2465.	7.1	174
66	Stressed Out About Hormones: How Plants Orchestrate Immunity. Cell Host and Microbe, 2019, 26, 163-172.	11.0	172
67	Ubiquitin facilitates a quality-control pathway that removes damaged chloroplasts. Science, 2015, 350, 450-454.	12.6	171
68	Genome-wide patterns of single-feature polymorphism in <i>Arabidopsis thaliana</i> . Proceedings of the United States of America, 2007, 104, 12057-12062.	7.1	157
69	Arabidopsis det2 Is Defective in the Conversion of (24R)-24-Methylcholest-4-En-3-One to (24R)-24-Methyl-51̂±-Cholestan-3-One in Brassinosteroid Biosynthesis1. Plant Physiology, 1999, 120, 833-840.	4.8	153
70	Smoke-derived karrikin perception by the α/β-hydrolase KAI2 from <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8284-8289.	7.1	152
71	Extracellular leucine-rich repeats as a platform for receptor/coreceptor complex formation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8503-8507.	7.1	146
72	Sigma factorâ€mediated plastid retrograde signals control nuclear gene expression. Plant Journal, 2013, 73, 1-13.	5.7	145

#	Article	IF	CITATIONS
73	Brassinosteroid Signaling: A Paradigm for Steroid Hormone Signaling from the Cell Surface. Science, 2006, 314, 1410-1411.	12.6	143
74	Internalization and vacuolar targeting of the brassinosteroid hormone receptor BRI1 are regulated by ubiquitination. Nature Communications, 2015, 6, 6151.	12.8	143
75	Steroid signaling in plants and insectscommon themes, different pathways. Genes and Development, 2002, 16, 3113-3129.	5.9	142
76	FRIGIDA-Independent Variation in Flowering Time of Natural Arabidopsis thaliana Accessions. Genetics, 2005, 170, 1197-1207.	2.9	138
77	Nascent RNA sequencing reveals distinct features in plant transcription. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12316-12321.	7.1	136
78	The growth–defense pivot: crisis management in plants mediated by LRR-RK surface receptors. Trends in Biochemical Sciences, 2014, 39, 447-456.	7.5	135
79	Cotyledon-Generated Auxin Is Required for Shade-Induced Hypocotyl Growth in <i>Brassica rapa</i> Â Â Â Â. Plant Physiology, 2014, 165, 1285-1301.	4.8	128
80	Quantitative Trait Loci Controlling Light and Hormone Response in Two Accessions of <i>Arabidopsis thaliana</i> . Genetics, 2002, 160, 683-696.	2.9	127
81	Brassinosteroid signal transduction: still casting the actors. Current Opinion in Plant Biology, 2000, 3, 79-84.	7.1	124
82	Co-targeting RNA Polymerases IV and V Promotes Efficient De Novo DNA Methylation in Arabidopsis. Cell, 2019, 176, 1068-1082.e19.	28.9	124
83	Subset of heat-shock transcription factors required for the early response of <i>Arabidopsis</i> to excess light. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14474-14479.	7.1	123
84	Crosstalk in Cellular Signaling: Background Noise or the Real Thing?. Developmental Cell, 2011, 21, 985-991.	7.0	122
85	Local auxin metabolism regulates environment-induced hypocotyl elongation. Nature Plants, 2016, 2, 16025.	9.3	122
86	Methylation of a Phosphatase Specifies Dephosphorylation and Degradation of Activated Brassinosteroid Receptors. Science Signaling, 2011, 4, ra29.	3.6	121
87	A crucial role for the putative Arabidopsis topoisomerase VI in plant growth and development. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10191-10196.	7.1	120
88	Light signal transduction: an infinite spectrum of possibilities. Plant Journal, 2010, 61, 982-991.	5.7	119
89	The Arabidopsis Transcriptome Responds Specifically and Dynamically to High Light Stress. Cell Reports, 2019, 29, 4186-4199.e3.	6.4	119
90	RSF1, an Arabidopsis Locus Implicated in Phytochrome A Signaling. Plant Physiology, 2000, 124, 39-46.	4.8	113

#	Article	IF	CITATIONS
91	New Arabidopsis cue Mutants Suggest a Close Connection between Plastid- and Phytochrome Regulation of Nuclear Gene Expression. Plant Physiology, 1998, 118, 803-815.	4.8	109
92	Genomics tools for QTL analysis and gene discovery. Current Opinion in Plant Biology, 2004, 7, 132-136.	7.1	109
93	Suppressors of an Arabidopsis thaliana phyB Mutation Identify Genes That Control Light Signaling and Hypocotyl Elongation. Genetics, 1998, 148, 1295-1310.	2.9	109
94	RNA-directed DNA methylation involves co-transcriptional small-RNA-guided slicing of polymerase V transcripts in Arabidopsis. Nature Plants, 2018, 4, 181-188.	9.3	106
95	The Impact of Arabidopsis on Human Health: Diversifying Our Portfolio. Cell, 2008, 133, 939-943.	28.9	101
96	The epidermis coordinates auxin-induced stem growth in response to shade. Genes and Development, 2016, 30, 1529-1541.	5.9	99
97	The Many Models of Strigolactone Signaling. Trends in Plant Science, 2020, 25, 395-405.	8.8	98
98	Amino acid polymorphisms in <i>Arabidopsis</i> phytochrome B cause differential responses to light. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3157-3162.	7.1	97
99	GUN1 interacts with MORF2 to regulate plastid RNA editing during retrograde signaling. Proceedings of the United States of America, 2019, 116, 10162-10167.	7.1	96
100	Chimeric Activators and Repressors Define HY5 Activity and Reveal a Light-Regulated Feedback Mechanism. Plant Cell, 2020, 32, 967-983.	6.6	96
101	Genetically encoded photoswitching of actin assembly through the Cdc42-WASP-Arp2/3 complex pathway. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12797-12802.	7.1	92
102	QTL Mapping in New Arabidopsis thaliana Advanced Intercross-Recombinant Inbred Lines. PLoS ONE, 2009, 4, e4318.	2.5	92
103	Interactions between hy1 and gun mutants of Arabidopsis, and their implications for plastid/nuclear signalling. Plant Journal, 2000, 24, 883-894.	5.7	86
104	Light-Response Quantitative Trait Loci Identified with Composite Interval and eXtreme Array Mapping in Arabidopsis thalianaSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY394847 and AY466496 Genetics, 2004, 167, 907-917.	2.9	83
105	Synergism of Red and Blue Light in the Control of Arabidopsis Gene Expression and Development. Current Biology, 2009, 19, 1216-1220.	3.9	80
106	Growth coordination and the shoot epidermis. Current Opinion in Plant Biology, 2008, 11, 42-48.	7.1	78
107	BRASSINOSTEROID-SIGNALING KINASE 3, a plasma membrane-associated scaffold protein involved in early brassinosteroid signaling. PLoS Genetics, 2019, 15, e1007904.	3.5	76
108	Steroid signaling in plants: from the cell surface to the nucleus. BioEssays, 2001, 23, 1028-1036.	2.5	75

#	Article	IF	CITATIONS
109	Automated analysis of hypocotyl growth dynamics during shade avoidance in Arabidopsis. Plant Journal, 2011, 65, 991-1000.	5.7	74
110	Tyrosine Phosphorylation Regulates the Activity of Phytochrome Photoreceptors. Cell Reports, 2013, 3, 1970-1979.	6.4	74
111	Integration of Light and Photoperiodic Signaling in Transcriptional Nuclear Foci. Developmental Cell, 2015, 35, 311-321.	7.0	72
112	Two interacting ethylene response factors regulate heat stress response. Plant Cell, 2021, 33, 338-357.	6.6	72
113	A zinc knuckle protein that negatively controls morning-specific growth in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17193-17198.	7.1	67
114	Mapping transcription factor interactome networks using HaloTag protein arrays. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4238-47.	7.1	67
115	Cloning of the Arabidopsis RSF1 Gene by Using a Mapping Strategy Based on High-Density DNA Arrays and Denaturing High-Performance Liquid Chromatography. Plant Cell, 2000, 12, 2485-2498.	6.6	61
116	Dancing in the dark: darkness as a signal in plants. Plant, Cell and Environment, 2017, 40, 2487-2501.	5.7	61
117	Structural Basis of Karrikin and Non-natural Strigolactone Perception in Physcomitrella patens. Cell Reports, 2019, 26, 855-865.e5.	6.4	61
118	GSNOR provides plant tolerance to iron toxicity via preventing iron-dependent nitrosative and oxidative cytotoxicity. Nature Communications, 2019, 10, 3896.	12.8	59
119	Mechanism of early light signaling by the carboxy-terminal output module of Arabidopsis phytochrome B. Nature Communications, 2017, 8, 1905.	12.8	57
120	PHYTOCHROME-INTERACTING FACTORs trigger environmentally responsive chromatin dynamics in plants. Nature Genetics, 2021, 53, 955-961.	21.4	54
121	HY5, Circadian Clock-Associated 1, and a cis-Element, DET1 Dark Response Element, Mediate DET1 Regulation of Chlorophyll a/b-Binding Protein 2 Expression. Plant Physiology, 2003, 133, 1565-1577.	4.8	52
122	Weaving the Complex Web of Signal Transduction. Plant Physiology, 2001, 125, 77-80.	4.8	48
123	Photomorphogenesis. The Arabidopsis Book, 2002, 1, e0054.	0.5	46
124	Proteasome-Mediated Turnover of Arabidopsis MED25 Is Coupled to the Activation of <i>FLOWERING LOCUS T</i>	4.8	46
125	High-Resolution Laser Scanning Reveals Plant Architectures that Reflect Universal Network Design Principles. Cell Systems, 2017, 5, 53-62.e3.	6.2	44
126	Sustained <scp>NIK</scp> â€mediated antiviral signalling confers broadâ€spectrum tolerance to begomoviruses in cultivated plants. Plant Biotechnology Journal, 2015, 13, 1300-1311.	8.3	43

#	Article	IF	CITATIONS
127	Stretch-activated ion channels identified in the touch-sensitive structures of carnivorous Droseraceae plants. ELife, 2021, 10, .	6.0	43
128	Unraveling the Linkage between Retrograde Signaling and RNA Metabolism in Plants. Trends in Plant Science, 2020, 25, 141-147.	8.8	36
129	In Vivo Imaging of Diacylglycerol at the Cytoplasmic Leaflet of Plant Membranes. Plant and Cell Physiology, 2017, 58, 1196-1207.	3.1	33
130	Natural variation in phytochrome signaling. Seminars in Cell and Developmental Biology, 2000, 11, 523-530.	5.0	32
131	Local HY5 Activity Mediates Hypocotyl Growth and Shoot-to-Root Communication. Plant Communications, 2020, 1, 100078.	7.7	32
132	Phytobilin biosynthesis: the Synechocystis sp. PCC 6803 heme oxygenase-encoding ho1 gene complements a phytochrome-deficient Arabidopsis thalianna hy1 mutant. Plant Molecular Biology, 2000, 43, 113-120.	3.9	31
133	Leaf cell-specific and single-cell transcriptional profiling reveals a role for the palisade layer in UV light protection. Plant Cell, 2022, 34, 3261-3279.	6.6	31
134	ZINC-FINGER interactions mediate transcriptional regulation of hypocotyl growth in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4503-E4511.	7.1	28
135	Epigenetic silencing of a multifunctional plant stress regulator. ELife, 2019, 8, .	6.0	28
136	PIL1 Participates in a Negative Feedback Loop that Regulates Its Own Gene Expression in Response to Shade. Molecular Plant, 2014, 7, 1582-1585.	8.3	27
137	A Statistical Description of Plant Shoot Architecture. Current Biology, 2017, 27, 2078-2088.e3.	3.9	27
138	HY5 and phytochrome activity modulate shoot-to-root coordination during thermomorphogenesis in <i>Arabidopsis</i> . Development (Cambridge), 2020, 147, .	2.5	27
139	Arabidopsis Brassinosteroid Signaling Pathway. Science's STKE: Signal Transduction Knowledge Environment, 2006, 2006, cm5-cm5.	3.9	26
140	<i>genome uncoupled1</i> Mutants Are Hypersensitive to Norflurazon and Lincomycin. Plant Physiology, 2018, 178, 960-964.	4.8	25
141	Overexpression of the bacterial tryptophan oxidase RebO affects auxin biosynthesis and Arabidopsis development. Science Bulletin, 2016, 61, 859-867.	9.0	23
142	Building Integrated Models of Plant Growth and Development. Plant Physiology, 2003, 132, 436-439.	4.8	22
143	A hydrophobic anchor mechanism defines a deacetylase family that suppresses host response against YopJ effectors. Nature Communications, 2017, 8, 2201.	12.8	22
144	Long-day photoperiod enhances jasmonic acid-related plant defense. Plant Physiology, 2018, 178, pp.00443.2018.	4.8	20

#	Article	IF	CITATIONS
145	Structural and chemical biology of deacetylases for carbohydrates, proteins, small molecules and histones. Communications Biology, 2018, 1, 217.	4.4	19
146	Characterization of <i>tub4^{P287L}</i> , a βâ€ŧubulin mutant, revealed new aspects of microtubule regulation in shade. Journal of Integrative Plant Biology, 2015, 57, 757-769.	8.5	18
147	Brassinosteroid Signaling Pathway. Science's STKE: Signal Transduction Knowledge Environment, 2006, 2006, cm4-cm4.	3.9	17
148	A WW Domain-Containing Protein Forms Immune Nuclear Bodies against Begomoviruses. Molecular Plant, 2018, 11, 1449-1465.	8.3	17
149	Roles for the chloroplastâ€localized pentatricopeptide repeat protein 30 and the â€ ⁻ mitochondrial' transcription termination factor 9 in chloroplast quality control. Plant Journal, 2020, 104, 735-751.	5.7	15
150	A current perspective on the role of AGCVIII kinases in PIN-mediated apical hook development. Frontiers in Plant Science, 2015, 6, 767.	3.6	13
151	Unfolding the Mysteries of Strigolactone Signaling. Molecular Plant, 2014, 7, 934-936.	8.3	11
152	Phytochrome A Antagonizes PHYTOCHROME INTERACTING FACTOR 1 to Prevent Over-Activation of Photomorphogenesis. Molecular Plant, 2014, 7, 1415-1428.	8.3	11
153	Singlet Oxygen Leads to Structural Changes to Chloroplasts during their Degradation in the <i>Arabidopsis thaliana plastid ferrochelatase two</i> Mutant. Plant and Cell Physiology, 2022, 63, 248-264.	3.1	11
154	Brassinosteroid's multi-modular interaction with the general stress network customizes stimulus-specific responses in Arabidopsis. Plant Science, 2016, 250, 165-177.	3.6	9
155	Inâ€silico analysis of the strigolactone ligandâ€receptor system. Plant Direct, 2020, 4, e00263.	1.9	8
156	Dynamic calcium signals mediate the feeding response of the carnivorous sundew plant. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	8
157	Image-Based Analysis of Light-Grown Seedling Hypocotyls in Arabidopsis. Methods in Molecular Biology, 2012, 918, 1-7.	0.9	2
158	Next Generation of Plant-Associated Bacterial Genome Data. Cell Host and Microbe, 2018, 24, 10-11.	11.0	2
159	Big Data to the Bench: Transcriptome Analysis for Undergraduates. CBE Life Sciences Education, 2019, 18, ar19.	2.3	2
160	Multikingdom diffusion barrier control. Science, 2021, 371, 125-125.	12.6	2
161	Network trade-offs and homeostasis in Arabidopsis shoot architectures. PLoS Computational Biology, 2019, 15, e1007325.	3.2	1
162	An open letter to the metabolomics community: looking forward to a future of integrative plant biology. Metabolomics, 2013, 9, 268-270.	3.0	0