Zhongxing Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4150354/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation and Performance Evaluation of Butylated Graphene Oxide (C4H9-GO) Incorporated Modified Cement. Arabian Journal for Science and Engineering, 2022, 47, 3991-4002.	3.0	3
2	Hydrophobic shell structured NH2-MIL(Ti)-125@mesoporous carbon composite via confined growth strategy for ultra-high selective adsorption of toluene under highly humid environment. Chemical Engineering Journal, 2022, 432, 134340.	12.7	29
3	Amino acids imprinted ZIF-8s for the highly efficient and selective adsorption of antioxidant peptides from silkworm pupa protein. Food Research International, 2022, 157, 111406.	6.2	6
4	Confined construction of COF@Cu-nanozyme with high activity and stability as laccase biomimetic catalyst for the efficient degradation of phenolic pollutants. Chemical Engineering Journal, 2022, 448, 137701.	12.7	39
5	Biomimetic O2-carrying and highly in-situ H2O2 generation using Ti3C2 MXene/MIL-100(Fe) hybrid via Fe-Protoporphyrin bridging for photo-fenton synergistic degradation of thiacloprid. Chemical Engineering Journal, 2022, 450, 137964.	12.7	31
6	Designing C-Fe-O bonded MIL-88B(Fe)/jasmine petal-derived-carbon composite biosensor for the simultaneous detection of dopamine and uric acid. Chemical Engineering Journal, 2021, 404, 126570.	12.7	60
7	Implanting polyethylene glycol into MIL-101(Cr) as hydrophobic barrier for enhancing toluene adsorption under highly humid environment. Chemical Engineering Journal, 2021, 404, 126562.	12.7	55
8	High-density immobilization of laccase on hollow nano-sphere NH2-MIL88(Fe) host with interfacial defects to improve enzyme activity and stability for remazol brilliant blue R decolorization. Chemical Engineering Journal, 2021, 405, 127003.	12.7	48
9	Accurate prediction for adsorption rate of peptides with high ACE-inhibitory activity from sericin hydrolysate on thiophene hypercross-linked polymer using CoMSIA in 3D-QSAR model. Food Research International, 2021, 141, 110144.	6.2	6
10	Fabrication of hollow covalent-organic framework microspheres via emulsion-interfacial strategy to enhance laccase immobilization for tetracycline degradation. Chemical Engineering Journal, 2021, 421, 129743.	12.7	55
11	Improved interface compatibility of hollow H-Zr0.1Ti0.9O2 with UiO-66-NH2 via Zr-Ti bidirectional penetration to boost visible photocatalytic activity for acetaldehyde degradation under high humidity. Applied Catalysis B: Environmental, 2021, 296, 120371.	20.2	51
12	Engineering NSAIDs imprinted UiO-66s for markedly enhanced adsorption of coexisting diclofenac sodium and Cu(II) and their synergistic adsorption mechanism. Chemical Engineering Journal, 2021, 426, 131440.	12.7	32
13	Construction of ultra-stable and Z-scheme Fe-Graphdiyne/MIL-100(Fe) photo-Fenton catalyst with CÂ=ÂC-Fe O interface for the highly enhanced catalytic degradation of Dinotefuran. Chemical Engineering Journal, 2021, 426, 131621.	12.7	41
14	Defect engineering of NH2-MIL-88B(Fe) using different monodentate ligands for enhancement of photo-Fenton catalytic performance of acetamiprid degradation. Chemical Engineering Journal, 2020, 398, 125684.	12.7	87
15	Enhanced moisture-resistance and excellent photocatalytic performance of synchronous N/Zn-decorated MIL-125(Ti) for vaporous acetaldehyde degradation. Chemical Engineering Journal, 2020, 388, 124389.	12.7	71
16	Construction of Cu-bridged Cu2O/MIL(Fe/Cu) catalyst with enhanced interfacial contact for the synergistic photo-Fenton degradation of thiacloprid. Chemical Engineering Journal, 2020, 395, 125184.	12.7	90
17	Engineering pH-switchable UiO-66 via in-situ amino acid doping for highly selective adsorption of anionic dyes. Chemical Engineering Journal, 2020, 395, 124958.	12.7	56
18	Nitrogen-Doped Hollow Copolymer Tube via Template-Free Asynchronous Polymerization with Highly Selective Separation of Hydrophilic Dipeptide for Enhancing Inhibitory Activity of Angiotensin Converting Enzyme. ACS Applied Materials & Interfaces, 2019, 11, 31700-31708.	8.0	15

ZHONGXING ZHAO

#	Article	IF	CITATIONS
19	Multi-crystalline N-doped Cu/CuxO/C foam catalyst derived from alkaline N-coordinated HKUST-1/CMC for enhanced 4-nitrophenol reduction. Journal of Colloid and Interface Science, 2019, 553, 1-13.	9.4	50
20	Amino Acid Imprinted UiO-66s for Highly Recognized Adsorption of Small Angiotensin-Converting-Enzyme-Inhibitory Peptides. ACS Applied Materials & Interfaces, 2019, 11, 23039-23049.	8.0	30
21	In-situ fabrication of cellulose foam HKUST-1 and surface modification with polysaccharides for enhanced selective adsorption of toluene and acidic dipeptides. Chemical Engineering Journal, 2019, 369, 898-907.	12.7	72
22	Porous Fe@C Composites Derived from Silkworm Excrement for Effective Separation of Anisole Compounds. ACS Omega, 2019, 4, 21204-21213.	3.5	8
23	Construction of crystal defect sites in N-coordinated UiO-66 via mechanochemical in-situ N-doping strategy for highly selective adsorption of cationic dyes. Chemical Engineering Journal, 2019, 356, 329-340.	12.7	109
24	Preparation of highly-hydrophobic novel N-coordinated UiO-66(Zr) with dopamine via fast mechano-chemical method for (CHO-/Cl-)-VOCs competitive adsorption in humid environment. Chemical Engineering Journal, 2018, 332, 608-618.	12.7	135
25	Highly Advanced Degradation of Thiamethoxam by Synergistic Chemisorption-Catalysis Strategy Using MIL(Fe)/Fe-SPC Composites with Ultrasonic Irradiation. ACS Applied Materials & Interfaces, 2018, 10, 35260-35272.	8.0	40
26	Pyrrolic N-enriched carbon fabricated from dopamine-melamine via fast mechanochemical copolymerization for highly selective separation of CO2 from CO2/N2. Chemical Engineering Journal, 2018, 349, 92-100.	12.7	34
27	Purification, modification and inhibition mechanism of angiotensin I-converting enzyme inhibitory peptide from silkworm pupa (Bombyx mori) protein hydrolysate. Process Biochemistry, 2017, 54, 172-179.	3.7	64
28	Ultrasonic-assisted modification of a novel silkworm-excrement-based porous carbon with various Lewis acid metal ions for the sustained release of the pesticide thiamethoxam. RSC Advances, 2017, 7, 30020-30031.	3.6	13
29	Hydrophobic N-doped porous biocarbon from dopamine for high selective adsorption of p-Xylene under humid conditions. Chemical Engineering Journal, 2017, 317, 660-672.	12.7	86
30	High-Throughput and Rapid Screening of Novel ACE Inhibitory Peptides from Sericin Source and Inhibition Mechanism by Using in Silico and in Vitro Prescriptions. Journal of Agricultural and Food Chemistry, 2017, 65, 10020-10028.	5.2	38
31	Graphitized Porous Carbon for Rapid Screening of Angiotensin-Converting Enzyme Inhibitory Peptide GAMVVH from Silkworm Pupa Protein and Molecular Insight into Inhibition Mechanism. Journal of Agricultural and Food Chemistry, 2017, 65, 8626-8633.	5.2	36
32	Ultrafast Screening of a Novel, Moderately Hydrophilic Angiotensin-Converting-Enzyme-Inhibitory Peptide, RYL, from Silkworm Pupa Using an Fe-Doped-Silkworm-Excrement-Derived Biocarbon: Waste Conversion by Waste. Journal of Agricultural and Food Chemistry, 2017, 65, 11202-11211.	5.2	26
33	Enhanced hydrophobic MIL(Cr) metal-organic framework with high capacity and selectivity for benzene VOCs capture from high humid air. Chemical Engineering Journal, 2017, 313, 1122-1131.	12.7	109
34	A Microporous Graphitized Biocarbon with High Adsorption Capacity toward Benzene Volatile Organic Compounds (VOCs) from Humid Air at Ultralow Pressures. Industrial & Engineering Chemistry Research, 2016, 55, 3765-3774.	3.7	52
35	Purification and characterization of antioxidative peptides from round scad (Decapterus maruadsi) muscle protein hydrolysate. Food Chemistry, 2014, 154, 158-163.	8.2	112

Kinetic Model of Enzymatic Hydrolysis of Protein about the Protein of Silkworm Pupae – Alcalase System., 2012, , .