MarÃa J Manzanos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4149208/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of different cooking methods on the lipids and volatile components of farmed and wild European sea bass (Dicentrarchus labrax). Food Research International, 2018, 103, 48-58.	2.9	31
2	Influence of different salting processes on the evolution of the volatile metabolites of vacuumâ€packed fillets of farmed and wild sea bass (<i>Dicentrarchus labrax</i>) stored under refrigeration conditions: a study by SPMEâ€GC/MS. Journal of the Science of Food and Agriculture, 2017, 97, 967-976.	1.7	6
3	Effect of Smoking Using Smoke Flavorings on Several Characteristics of Farmed Sea Bass (<i>Dicentrarchus labrax</i>) Fillets and on their Evolution During Vacuum-Packed Storage at Refrigeration Temperature. Journal of Food Processing and Preservation, 2017, 41, e12800.	0.9	6
4	Fish <i>in Vitro</i> Digestion: Influence of Fish Salting on the Extent of Lipolysis, Oxidation, and Other Reactions. Journal of Agricultural and Food Chemistry, 2017, 65, 879-891.	2.4	21
5	1H NMR and SPME-GC/MS study of hydrolysis, oxidation and other reactions occurring during in vitro digestion of non-oxidized and oxidized sunflower oil. Formation of hydroxy-octadecadienoates. Food Research International, 2017, 91, 171-182.	2.9	29
6	Changes provoked by boiling, steaming and sous-vide cooking in the lipid and volatile profile of European sea bass. Food Research International, 2017, 99, 630-640.	2.9	68
7	Influence of smoking with smoke flavorings on the oxidative stability of farmed sea bass fillets monitored by1H NMR and FTIR. European Journal of Lipid Science and Technology, 2017, 119, 1600023.	1.0	2
8	The influence of frying technique, cooking oil and fish species on the changes occurring in fish lipids and oil during shallow-frying, studied by 1H NMR. Food Research International, 2016, 84, 150-159.	2.9	45
9	A study by 1H NMR on the influence of some factors affecting lipid in vitro digestion. Food Chemistry, 2016, 211, 17-26.	4.2	39
10	Metabolite release and protein hydrolysis during the in vitro digestion of cooked sea bass fillets. A study by 1H NMR. Food Research International, 2016, 88, 293-301.	2.9	19
11	Farmed and wild sea bass (<i>Dicentrarchus labrax</i>) volatile metabolites: a comparative study by SPMEâ€GC/MS. Journal of the Science of Food and Agriculture, 2016, 96, 1181-1193.	1.7	35
12	¹ H NMR study of the changes in brine―and dryâ€salted sea bass lipids under thermoâ€oxidative conditions: Both salting methods reduce oxidative stability. European Journal of Lipid Science and Technology, 2015, 117, 440-449.	1.0	17
13	Usefulness of 1H NMR in assessing the extent of lipid digestion. Food Chemistry, 2015, 179, 182-190.	4.2	63
14	2,6â€Diâ€Tertâ€Butylâ€Hydroxytoluene and Its Metabolites in Foods. Comprehensive Reviews in Food Science and Food Safety, 2015, 14, 67-80.	5.9	119
15	A method based on 1H NMR spectral data useful to evaluate the hydrolysis level in complex lipid mixtures. Food Research International, 2014, 66, 379-387.	2.9	121
16	Fourier transform infrared spectroscopy as a tool to study farmed and wild sea bass lipid composition. Journal of the Science of Food and Agriculture, 2014, 94, 1340-1348.	1.7	23
17	Quality of farmed and wild sea bass lipids studied by 1H NMR: Usefulness of this technique for differentiation on a qualitative and a quantitative basis. Food Chemistry, 2012, 135, 1583-1591.	4.2	58
18	Carbohydrate and Nitrogenated Compounds in Liquid Smoke Flavorings. Journal of Agricultural and Food Chemistry, 2001, 49, 2395-2403.	2.4	48

#	Article	IF	CITATIONS
19	Smoke and liquid smoke. Study of an aqueous smoke flavouring from the aromatic plantThymus vulgaris L. Journal of the Science of Food and Agriculture, 1999, 79, 1267-1274.	1.7	38
20	Extractable Components of the Aerial Parts ofSalvialavandulifoliaand Composition of the Liquid Smoke Flavoring Obtained from Them. Journal of Agricultural and Food Chemistry, 1999, 47, 3016-3027.	2.4	36
21	Some changes in an aqueous liquid smoke flavouring during storage in polythene receptacles. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1996, 202, 24-29.	0.7	9
22	Study of a Commercial Liquid Smoke Flavoring by Means of Gas Chromatography/Mass Spectrometry and Fourier Transform Infrared Spectroscopy. Journal of Agricultural and Food Chemistry, 1995, 43, 463-468.	2.4	76