Branka Vulesevic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4148493/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Neanderthal OAS1 isoform protects individuals of European ancestry against COVID-19 susceptibility and severity. Nature Medicine, 2021, 27, 659-667.	30.7	188
2	Clinical implications of left atrial size adjustment: Impact of obesity. Archives of Cardiovascular Diseases, 2021, 114, 561-569.	1.6	3
3	Neutrophils proâ€inflammatory and antiâ€inflammatory cytokine release in patients with heart failure and reduced ejection fraction. ESC Heart Failure, 2021, 8, 3855-3864.	3.1	9
4	CRP Induces NETosis in Heart Failure Patients with or without Diabetes. ImmunoHorizons, 2019, 3, 378-388.	1.8	28
5	Synthesis of Human Neutrophil Extracellular Traps Contributes to Angiopoietin-Mediated In Vitro Proinflammatory and Proangiogenic Activities. Journal of Immunology, 2018, 200, 3801-3813.	0.8	30
6	Subclinical Inflammation in Heart Failure: A Neutrophil Perspective. Canadian Journal of Cardiology, 2018, 34, 717-725.	1.7	16
7	An injectable CCN1-collagen matrix for cardiac cell support and treatment of myocardial infarction. Journal of Molecular and Cellular Cardiology, 2018, 124, 84-85.	1.9	0
8	Collagen-chitosan-laminin hydrogels for the delivery of insulin-producing tissue. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, E397-E408.	2.7	12
9	Methylglyoxal-Induced Endothelial Cell Loss and Inflammation Contribute to the Development of Diabetic Cardiomyopathy. Diabetes, 2016, 65, 1699-1713.	0.6	98
10	Collagen matrixâ€induced expression of integrin αVβ3 in circulating angiogenic cells can be targeted by matricellular protein CCN1 to enhance their function. FASEB Journal, 2015, 29, 1198-1207.	0.5	9
11	Safety and efficacy of composite collagen–silver nanoparticle hydrogels as tissue engineering scaffolds. Nanoscale, 2015, 7, 18789-18798.	5.6	83
12	Glyoxalase-1 overexpression in bone marrow cells reverses defective neovascularization in STZ-induced diabetic mice. Cardiovascular Research, 2014, 101, 306-316.	3.8	37
13	Trichostatin A Enhances Vascular Repair by Injected Human Endothelial Progenitors through Increasing the Expression of TAL1-Dependent Genes. Cell Stem Cell, 2014, 14, 644-657.	11.1	48
14	Reducing methylglyoxal as a therapeutic target for diabetic heart disease. Biochemical Society Transactions, 2014, 42, 523-527.	3.4	8
15	The role of integrin α2 in cell and matrix therapy that improves perfusion, viability and function of infarcted myocardium. Biomaterials, 2014, 35, 4749-4758.	11.4	34
16	A Collagen-Chitosan Injectable Hydrogel Improves Cardiac Remodeling in a Mouse Model of Myocardial Infarction. Journal of Biomaterials and Tissue Engineering, 2014, 4, 886-894.	0.1	9
17	Injectable Small Intestine Submucosal Extracellular Matrix in an Acute Myocardial Infarction Model. Annals of Thoracic Surgery, 2013, 96, 1686-1694.	1.3	40
18	Evaluation of a Collagen-Chitosan Hydrogel for Potential Use as a Pro-Angiogenic Site for Islet Transplantation. PLoS ONE, 2013, 8, e77538.	2.5	51

BRANKA VULESEVIC

#	Article	IF	CITATIONS
19	Tunable Collagen Hydrogels are Modified by the Therapeutic Agents They are Designed to Deliver. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1467-1483.	3.5	5
20	Ex vivo generation of a highly potent population of circulating angiogenic cells using a collagen matrix. Journal of Molecular and Cellular Cardiology, 2011, 51, 187-197.	1.9	37
21	Acid–base regulation in the plainfin midshipman (Porichthys notatus): an aglomerular marine teleost. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2010, 180, 1213-1225.	1.5	34
22	A Collagen–Chitosan Hydrogel for Endothelial Differentiation and Angiogenesis. Tissue Engineering - Part A, 2010, 16, 3099-3109.	3.1	139
23	Urea transporter and glutamine synthetase regulation and localization in gulf toadfish gill. Journal of Experimental Biology, 2009, 212, 704-712.	1.7	35