Yue-E Miao

List of Publications by Citations

Source: https://exaly.com/author-pdf/4148252/yue-e-miao-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 4,830 41 93 h-index g-index citations papers 8.2 5.9 97 5,572 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
93	Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. <i>Journal of Power Sources</i> , 2013 , 226, 82-86	8.9	316
92	Biomass-Derived Nitrogen-Doped Carbon Nanofiber Network: A Facile Template for Decoration of Ultrathin Nickel-Cobalt Layered Double Hydroxide Nanosheets as High-Performance Asymmetric Supercapacitor Electrode. <i>Small</i> , 2016 , 12, 3235-44	11	312
91	High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning. <i>ACS Applied Materials & District Materials</i>	9.5	212
90	Polydopamine-coated electrospun poly(vinyl alcohol)/poly(acrylic acid) membranes as efficient dye adsorbent with good recyclability. <i>Journal of Hazardous Materials</i> , 2015 , 283, 730-9	12.8	180
89	Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors. <i>Nanoscale</i> , 2013 , 5, 7312-20	7.7	161
88	Electrospun porous carbon nanofiber@MoS2 core/sheath fiber membranes as highly flexible and binder-free anodes for lithium-ion batteries. <i>Nanoscale</i> , 2015 , 7, 11093-101	7.7	155
87	Electrospun carbon nanofibers decorated with Ag-Pt bimetallic nanoparticles for selective detection of dopamine. ACS Applied Materials & Interfaces, 2014, 6, 12449-56	9.5	145
86	A CNT@MoSe2 hybrid catalyst for efficient and stable hydrogen evolution. <i>Nanoscale</i> , 2015 , 7, 18595-6	5 02 7	140
85	Flexible Hybrid Membranes with Ni(OH)2 Nanoplatelets Vertically Grown on Electrospun Carbon Nanofibers for High-Performance Supercapacitors. <i>ACS Applied Materials & Distriction (Communication)</i> , 7, 226	6 9 -77	132
84	Synthesis of few-layered MoSIhanosheet-coated electrospun SnOIhanotube heterostructures for enhanced hydrogen evolution reaction. <i>Nanoscale</i> , 2014 , 6, 10673-9	7.7	132
83	Polymer/Carbon-Based Hybrid Aerogels: Preparation, Properties and Applications. <i>Materials</i> , 2015 , 8, 6806-6848	3.5	120
82	Ni-doped graphene/carbon cryogels and their applications as versatile sorbents for water purification. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 7584-91	9.5	111
81	A novel hydrogen peroxide sensor based on Ag/SnO2 composite nanotubes by electrospinning. <i>Electrochimica Acta</i> , 2013 , 99, 117-123	6.7	109
80	Hierarchical ZnCo2 O4 @NiCo2 O4 Core-Sheath Nanowires: Bifunctionality towards High-Performance Supercapacitors and the Oxygen-Reduction Reaction. <i>Chemistry - A European Journal</i> , 2015 , 21, 10100-8	4.8	107
79	Electrospun self-standing membrane of hierarchical SiO2@EAlOOH (boehmite) core/sheath fibers for water remediation. <i>ACS Applied Materials & Distriction (Samp)</i> (1) 100 Materials & Distriction (1) 2012 Materials & Distriction (1) 2012 Materials & Distriction (1) 2013 Materials & Distriction (1) 2	9.5	92
78	Nitrogen-Doped Carbon Nanofiber/Molybdenum Disulfide Nanocomposites Derived from Bacterial Cellulose for High-Efficiency Electrocatalytic Hydrogen Evolution Reaction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 3558-66	9.5	90
77	Controllable preparation of multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide nanorods/nanosheets on electrospun carbon nanofibers for high-performance supercapacitors. <i>Electrochimica Acta</i> , 2015 , 174, 456-463	6.7	90

76	Perpendicularly oriented few-layer MoSe2 on SnO2 nanotubes for efficient hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 16263-16271	13	87
75	Morphology and photocatalytic property of hierarchical polyimide/ZnO fibers prepared via a direct ion-exchange process. <i>ACS Applied Materials & Interfaces</i> , 2013 , 5, 5617-22	9.5	83
74	Electrically conductive polyaniline/polyimide nanofiber membranes prepared via a combination of electrospinning and subsequent in situ polymerization growth. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 1206-12	9.5	82
73	Sulfur-Deficient Bismuth Sulfide/Nitrogen-Doped Carbon Nanofibers as Advanced Free-Standing Electrode for Asymmetric Supercapacitors. <i>Small</i> , 2018 , 14, e1801562	11	77
72	Plasmonic liquid marbles: a miniature substrate-less SERS platform for quantitative and multiplex ultratrace molecular detection. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 5054-8	16.4	71
71	Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes. <i>Nanoscale</i> , 2015 , 7, 1037-46	7.7	64
70	Polydopamine-derived porous carbon fiber/cobalt composites for efficient oxygen reduction reactions. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 23299-23306	13	60
69	Flexible free-standing 3D porous N-doped graphenedarbon nanotube hybrid paper for high-performance supercapacitors. <i>RSC Advances</i> , 2015 , 5, 9228-9236	3.7	60
68	Catalytic liquid marbles: Ag nanowire-based miniature reactors for highly efficient degradation of methylene blue. <i>Chemical Communications</i> , 2014 , 50, 5923-6	5.8	58
67	Electrospun fibers of layered double hydroxide/biopolymer nanocomposites as effective drug delivery systems. <i>Materials Chemistry and Physics</i> , 2012 , 134, 623-630	4.4	57
66	Flexible Hybrid Membranes of NiCo2O4-Doped Carbon [email@rotected]2 CoreBheath Nanostructures for High-Performance Supercapacitors. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 1344	12 ³ 1 ⁸ 34!	56 ⁷
65	Electrospun nanofiber-supported carbon aerogel as a versatile platform toward asymmetric supercapacitors. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 15861-15869	13	54
64	Electrospun fibrous membranes for efficient heavy metal removal. <i>Journal of Applied Polymer Science</i> , 2014 , 131, n/a-n/a	2.9	53
63	Flexible polyaniline-coated TiO/SiOIhanofiber membranes with enhanced visible-light photocatalytic degradation performance. <i>Journal of Colloid and Interface Science</i> , 2014 , 424, 49-55	9.3	53
62	Catalytic and antibacterial activities of green-synthesized silver nanoparticles on electrospun polystyrene nanofiber membranes using tea polyphenols. <i>Composites Part B: Engineering</i> , 2015 , 79, 217	7- 2 23	52
61	IIube brushIlike ZnO/SiO2 hybrid to construct a flexible membrane with enhanced photocatalytic properties and recycling ability. <i>Journal of Materials Chemistry</i> , 2011 , 21, 19375		51
60	Electrospun polymer nanofiber membrane electrodes and an electrolyte for highly flexible and foldable all-solid-state supercapacitors. <i>RSC Advances</i> , 2015 , 5, 26189-26196	3.7	49
59	Bionanofiber Assisted Decoration of Few-Layered MoSe Nanosheets on 3D Conductive Networks for Efficient Hydrogen Evolution. <i>Small</i> , 2017 , 13, 1602866	11	48

58	Bioinspired Micro/Nanofluidic Ion Transport Channels for Organic Cathodes in High-Rate and Ultrastable Lithium/Sodium-Ion Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1804629	15.6	47
57	Plasmonic Liquid Marbles: A Miniature Substrate-less SERS Platform for Quantitative and Multiplex Ultratrace Molecular Detection. <i>Angewandte Chemie</i> , 2014 , 126, 5154-5158	3.6	45
56	Confined growth of uniformly dispersed NiCo2S4 nanoparticles on nitrogen-doped carbon nanofibers for high-performance asymmetric supercapacitors. <i>Chemical Engineering Journal</i> , 2017 , 328, 599-608	14.7	44
55	Tracking Airborne Molecules from Afar: Three-Dimensional Metal-Organic Framework-Surface-Enhanced Raman Scattering Platform for Stand-Off and Real-Time Atmospheric Monitoring. <i>ACS Nano</i> , 2019 , 13, 12090-12099	16.7	43
54	In situ extracted poly(acrylic acid) contributing to electrospun nanofiber separators with precisely tuned pore structures for ultra-stable lithium ulfur batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3253-3263	13	43
53	Nonenzymatic sensor for glucose based on a glassy carbon electrode modified with Ni(OH)2 nanoparticles grown on a film of molybdenum sulfide. <i>Mikrochimica Acta</i> , 2013 , 180, 1127-1134	5.8	41
52	Carbon Aerogels Derived from Bacterial Cellulose/Polyimide Composites as Versatile Adsorbents and Supercapacitor Electrodes. <i>ChemNanoMat</i> , 2016 , 2, 212-219	3.5	41
51	Electrospun nickel-decorated carbon nanofiber membranes as efficient electrocatalysts for hydrogen evolution reaction. <i>Electrochimica Acta</i> , 2015 , 159, 1-7	6.7	40
50	Engineering a nanotubular mesoporous cobalt phosphide electrocatalyst by the Kirkendall effect towards highly efficient hydrogen evolution reactions. <i>Nanoscale</i> , 2017 , 9, 16313-16320	7.7	39
49	Filter paper-derived carbon fiber/polyaniline composite paper for high energy storage applications. <i>Composites Science and Technology</i> , 2014 , 101, 152-158	8.6	37
48	High-performance flexible supercapacitors based on mesoporous carbon nanofibers/Co3O4/MnO2 hybrid electrodes. <i>RSC Advances</i> , 2015 , 5, 18952-18959	3.7	36
47	Energy level engineering in transition-metal doped spinel-structured nanosheets for efficient overall water splitting. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 827-833	13	36
46	Porous graphenedarbon nanotube hybrid paper as a flexible nano-scaffold for polyaniline immobilization and application in all-solid-state supercapacitors. <i>RSC Advances</i> , 2015 , 5, 31064-31073	3.7	35
45	Ion-Selective Polyamide Acid Nanofiber Separators for High-Rate and Stable Lithium-Sulfur Batteries. <i>ACS Applied Materials & </i>	9.5	34
44	Oxygen vacancy engineering in spinel-structured nanosheet wrapped hollow polyhedra for electrochemical nitrogen fixation under ambient conditions. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 1652-1659	13	33
43	Elastic Carbon Aerogels Reconstructed from Electrospun Nanofibers and Graphene as Three-Dimensional Networked Matrix for Efficient Energy Storage/Conversion. <i>Scientific Reports</i> , 2016 , 6, 31541	4.9	32
42	Self-supported MoS2@NHCF fiber-in-tube composites with tunable voids for efficient hydrogen evolution reaction. <i>Composites Communications</i> , 2018 , 9, 86-91	6.7	29
41	Electrospinning of poly (Etaprolactone-co-lactide)/Pluronic blended scaffolds for skin tissue engineering. <i>Journal of Materials Science</i> , 2014 , 49, 7253-7262	4.3	29

(2020-2021)

40	3D printed carbon aerogel microlattices for customizable supercapacitors with high areal capacitance. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 423-432	13	27	
39	Highly Dual-Heteroatom-Doped Ultrathin Carbon Nanosheets with Expanded Interlayer Distance for Efficient Energy Storage. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 3143-3153	8.3	26	
38	Nanocubic-Co3O4 coupled with nitrogen-doped carbon nanofiber network: A synergistic binder-free catalyst toward oxygen reduction reactions. <i>Composites Communications</i> , 2016 , 1, 15-19	6.7	25	
37	Silicon @ nitrogen-doped porous carbon fiber composite anodes synthesized by an in-situ reaction collection strategy for high-performance lithium-ion batteries. <i>Applied Surface Science</i> , 2019 , 475, 211-2	2187	24	
36	Topochemistry-Driven Synthesis of Transition-Metal Selenides with Weakened Van Der Waals Force to Enable 3D-Printed Na-Ion Hybrid Capacitors. <i>Advanced Functional Materials</i> , 2022 , 32, 2110016	15.6	21	
35	MoSe2 Nanosheets Grown on Polydopamine-Derived Porous Fibers: A High-Performance Catalyst for Hydrogen Evolution Reaction. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1600825	4.6	19	
34	Polyimide separators for rechargeable batteries. <i>Journal of Energy Chemistry</i> , 2021 , 58, 170-197	12	19	
33	Elucidating dual-defect mechanism in rhenium disulfide nanosheets with multi-dimensional ion transport channels for ultrafast sodium storage. <i>Nano Energy</i> , 2020 , 77, 105189	17.1	17	
32	Eco-friendly synthesis of hierarchical ginkgo-derived carbon nanoparticles/NiAl-layered double hydroxide hybrid electrodes toward high-performance supercapacitors. <i>RSC Advances</i> , 2015 , 5, 55109-5	53178	15	
31	Highly porous electroactive polyimide-based nanofibrous composite anode for all-organic aqueous ammonium dual-ion batteries. <i>Composites Communications</i> , 2020 , 22, 100519	6.7	14	
30	Multi-scale uniform Li regulation triggered by tunable electric field distribution on oxygen-functionalized porous framework for flexible Li-S full batteries. <i>Energy Storage Materials</i> , 2021 , 42, 68-77	19.4	14	
29	Synergistic effect of carbon nanotubes and layered double hydroxides on the mechanical reinforcement of nylon-6 nanocomposites. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2014 , 32, 1276-1285	3.5	13	
28	Porous polymer composite separators with three-dimensional ion-selective nanochannels for high-performance LiB batteries. <i>Composites Communications</i> , 2021 , 25, 100679	6.7	13	
27	A bio-inspired N-doped porous carbon electrocatalyst with hierarchical superstructure for efficient oxygen reduction reaction. <i>Applied Surface Science</i> , 2018 , 443, 266-273	6.7	12	
26	A highly flexible and conductive graphene-wrapped carbon nanofiber membrane for high-performance electrocatalytic applications. <i>Inorganic Chemistry Frontiers</i> , 2016 , 3, 969-976	6.8	12	
25	Flexible naphthalene-based polyimide nanofiber cathode with hierarchical micro/nanoporous structure for high-performance organic sodium-ion batteries. <i>Composites Communications</i> , 2020 , 22, 100490	6.7	12	
24	Hierarchical composites of NiCo2S4 nanorods grown on carbon nanofibers as anodes for high-performance lithium ion batteries. <i>Composites Communications</i> , 2020 , 21, 100395	6.7	11	
23	Gradient phosphorus-doping engineering and superficial amorphous reconstruction in NiFeO nanoarrays to enhance the oxygen evolution electrocatalysis. <i>Nanoscale</i> , 2020 , 12, 10977-10986	7.7	11	

22	Shape-dependent thermo-plasmonic effect of nanoporous gold at the nanoscale for ultrasensitive heat-mediated remote actuation. <i>Nanoscale</i> , 2018 , 10, 16005-16012	7.7	11
21	Diameter-Controlled Synthesis and Capacitive Performance of Mesoporous Dual-Layer MnO2 Nanotubes. <i>ChemNanoMat</i> , 2015 , 1, 159-166	3.5	11
20	Carbon Fiber Supported Binary Metal Sulfide Catalysts with Multi-Dimensional Structures for Electrocatalytic Nitrogen Reduction Reactions Over a Wide pH Range. <i>Advanced Fiber Materials</i> , 2021 , 3, 229-238	10.9	10
19	A dual-functional poly(vinyl alcohol)/poly(lithium acrylate) composite nanofiber separator for ionic shielding of polysulfides enables high-rate and ultra-stable Li-S batteries. <i>Nano Research</i> , 2021 , 14, 1541	-1 650	10
18	Vacancy engineering of group VI anions in NiCo2A4 (A □ O, S, Se) for efficient hydrogen production by weakening the shackles of hydronium ion. <i>Electrochimica Acta</i> , 2020 , 333, 135515	6.7	9
17	Free-Standing Silver Nanocube/Graphene Oxide Hybrid Paper for Surface-Enhanced Raman Scattering. <i>Chinese Journal of Chemistry</i> , 2016 , 34, 73-81	4.9	9
16	Ultra-strong capillarity of bioinspired micro/nanotunnels in organic cathodes enabled high-performance all-organic sodium-ion full batteries. <i>Chemical Engineering Journal</i> , 2021 , 420, 127597	, 14.7	7
15	Graphene/EAlOOH Hybrids as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of Pb(II). <i>Chemical Research in Chinese Universities</i> , 2015 , 31, 590-596	2.2	6
14	Radical-functionalized polymer nanofiber composite separator for ultra-stable dendritic-free lithium metal batteries. <i>Composites Communications</i> , 2021 , 25, 100696	6.7	6
13	Hierarchically Organized Nanocomposites Derived from Low-dimensional Nanomaterials for Efficient Removal of Organic Pollutants. <i>Current Organic Chemistry</i> , 2015 , 19, 498-511	1.7	5
12	Electrospun Nanofiber Electrodes 2019 , 641-669		4
11	RECENT PROGRESS IN HIERARCHICALLY ORGANIZED POLYMER NANOCOMPOSITES BASED ON ELECTROSPUN NANOFIBERS. <i>Acta Polymerica Sinica</i> , 2012 , 012, 801-811		4
10	Metal Drganic Framework Decorated Polymer Nanofiber Composite Separator for Physiochemically Shielding Polysulfides in Stable Lithium Bulfur Batteries. <i>Energy & amp; Fuels</i> ,	4.1	4
9	Recent advances and perspectives of 3D printed micro-supercapacitors: from design to smart integrated devices <i>Chemical Communications</i> , 2022 ,	5.8	3
8	Electron-Deficient Au Nanoparticles Confined in Organic Molecular Cages for Catalytic Reduction of 4-Nitrophenol. <i>ACS Applied Nano Materials</i> , 2022 , 5, 1276-1283	5.6	2
7	Asymmetric Sodiophilic Host Based on a Ag-Modified Carbon Fiber Framework for Dendrite-Free Sodium Metal Anodes. <i>ACS Applied Materials & Sodium Metal Anodes. ACS Applied Metal Anodes. A</i>	9.5	2
6	Electrospun Polymer Nanofiber Separators and Electrolyte Membranes for Energy Storage and Conversion Applications 2016 , 201-223		2
5	Homogeneous electric field and Li flux regulation in three-dimensional nanofibrous composite framework for ultra-long-life lithium metal anode <i>Journal of Colloid and Interface Science</i> , 2022 , 614, 138-146	9.3	1

LIST OF PUBLICATIONS

4	Electrospun Biopolymer Nanofibers and Their Composites for Drug Delivery Applications275-298		1	
3	In-Situ Constructing Polyether-Based Composite Electrolyte with Bi-Phase Ion Conductivity and Stable Electrolyte/Electrode Interphase for Solid-State Lithium Metal Batteries. <i>Journal of Materials Chemistry A</i> ,	13	1	
2	Low-crystallinity tungsten disulfide construction by in-situ confinement effect enables ultrastable sodium-ion storage. <i>Journal of Alloys and Compounds</i> , 2022 , 900, 163518	5.7	О	
1	Flexible polytriphenylamine-based cathodes with reinforced energy-storage capacity for high-performance sodium-ion batteries. <i>Science China Materials</i> ,1	7.1	0	