
Junping Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4147572/publications.pdf Version: 2024-02-01

IUNDING 7HANG

#	Article	IF	CITATIONS
1	Non-fluorinated and durable photothermal superhydrophobic coatings based on attapulgite nanorods for efficient anti-icing and deicing. Chemical Engineering Journal, 2022, 428, 132585.	12.7	70
2	Water harvesting from desert soil via interfacial solar heating under natural sunlight. Journal of Colloid and Interface Science, 2022, 607, 1986-1992.	9.4	7
3	Superelastic Clay/Silicone Composite Sponges and Their Applications for Oil/Water Separation and Solar Interfacial Evaporation. Langmuir, 2022, 38, 1853-1859.	3.5	13
4	Design of advanced separators for high performance Li-S batteries using natural minerals with 1D to 3D microstructures. Journal of Colloid and Interface Science, 2022, 614, 593-602.	9.4	19
5	Durable and transparent super anti-wetting coatings with excellent liquid repellency and anti-fouling performance based on fluorinated polysiloxane. New Journal of Chemistry, 2022, 46, 6646-6656.	2.8	4
6	Preparation of Stable Superhydrophobic Coatings on Complexâ€Shaped Substrates. Advanced Materials Interfaces, 2022, 9, .	3.7	11
7	Melamine/Silicone Hybrid Sponges with Controllable Microstructure and Wettability for Efficient Solar-Driven Interfacial Desalination. ACS Applied Materials & Interfaces, 2022, 14, 2360-2368.	8.0	35
8	Robust Superamphiphobic Fabrics with Excellent Hot Liquid Repellency and Hot Water Vapor Resistance. Langmuir, 2022, 38, 5891-5899.	3.5	13
9	Preparation of Stable Superhydrophobic Coatings on Complexâ€5haped Substrates (Adv. Mater.) Tj ETQq1 1 0.7	784314 rg	BT (Overlock
10	Process Optimization for Supercritical Carbon Dioxide Extraction of <i>Origanum vulgare</i> L. Essential Oil Based on the Yield, Carvacrol, and Thymol Contents. Journal of AOAC INTERNATIONAL, 2022, 105, 1719-1729.	1.5	2
11	Super pressure-resistant superhydrophobic fabrics with real self-cleaning performance. IScience, 2022, 25, 104494.	4.1	13
12	Function-directed design of battery separators based on microporous polyolefin membranes. Journal of Materials Chemistry A, 2022, 10, 14137-14170.	10.3	38
13	Cuttleboneâ€Derived Interfacial Solar Evaporators for Longâ€Term Desalination and Water Harvesting. Advanced Sustainable Systems, 2022, 6, .	5.3	4
14	Facile preparation of polydimethylsiloxane/carbon nanotubes modified melamine solar evaporators for efficient steam generation and desalination. Journal of Colloid and Interface Science, 2021, 584, 602-609.	9.4	63
15	Highly salt-resistant and all-weather solar-driven interfacial evaporators with photothermal and electrothermal effects based on Janus graphene@silicone sponges. Nano Energy, 2021, 81, 105682.	16.0	127
16	Carbon nanotubes@silicone solar evaporators with controllable salt-tolerance for efficient water evaporation in a closed system. Journal of Materials Chemistry A, 2021, 9, 17502-17511.	10.3	35
17	Process optimization for the supercritical carbon dioxide extraction of <i>Foeniculum vulgare</i> Mill. seeds aromatic extract with respect to yield and <i>trans</i> â€anethole contents using Boxâ€Behnken design. Flavour and Fragrance Journal, 2021, 36, 280-291.	2.6	5
18	Waterborne, non-fluorinated and durable anti-icing superhydrophobic coatings based on diatomaceous earth. New Journal of Chemistry, 2021, 45, 10409-10417.	2.8	14

#	Article	IF	CITATIONS
19	Spectrum–effect relationship between GCâ€QTOFâ€MS fingerprint and antioxidant, antiâ€inflammatory activities of <i>Schizonepeta tenuifolia</i> essential oil. Biomedical Chromatography, 2021, 35, e5106.	1.7	17
20	Layered nanocomposite separators enabling dendrite-free lithium metal anodes at ultrahigh current density and cycling capacity. Energy Storage Materials, 2021, 37, 135-142.	18.0	32
21	Environmentally friendly, durable and transparent anti-fouling coatings applicable onto various substrates. Journal of Colloid and Interface Science, 2021, 591, 429-439.	9.4	26
22	Long-term corrosion protection for magnesium alloy by two-layer self-healing superamphiphobic coatings based on shape memory polymers and attapulgite. Journal of Colloid and Interface Science, 2021, 594, 836-847.	9.4	71
23	Superhydrophobic Coatings with Photothermal Self-Healing Chemical Composition and Microstructure for Efficient Corrosion Protection of Magnesium Alloy. Langmuir, 2021, 37, 13527-13536.	3.5	41
24	Design of a Separated Solar Interfacial Evaporation System for Simultaneous Water and Salt Collection. ACS Applied Materials & Interfaces, 2021, 13, 59518-59526.	8.0	26
25	Polydopamine and poly(dimethylsiloxane) modified superhydrophobic fiberglass membranes for efficient water-in-oil emulsions separation. Journal of Colloid and Interface Science, 2020, 559, 178-185.	9.4	37
26	A yolk@shell superhydrophobic/superhydrophilic solar evaporator for efficient and stable desalination. Journal of Materials Chemistry A, 2020, 8, 14736-14745.	10.3	61
27	Durable superamphiphobic coatings with high static and dynamic repellency towards liquids with low surface tension and high viscosity. Journal of Colloid and Interface Science, 2020, 578, 262-272.	9.4	23
28	Efficient protection of Mg alloy enabled by combination of a conventional anti-corrosion coating and a superamphiphobic coating. Chemical Engineering Journal, 2020, 390, 124562.	12.7	122
29	Electrically Conductive Carbon Aerogels with High Salt-Resistance for Efficient Solar-Driven Interfacial Evaporation. ACS Applied Materials & Interfaces, 2020, 12, 32143-32153.	8.0	93
30	Efficient scald-preventing enabled by robust polyester fabrics with hot water repellency and water impalement resistance. Journal of Colloid and Interface Science, 2020, 566, 69-78.	9.4	24
31	Stable cycling of Li–S batteries by simultaneously suppressing Li-dendrite growth and polysulfide shuttling enabled by a bioinspired separator. Journal of Materials Chemistry A, 2020, 8, 3692-3700.	10.3	71
32	A self-healing superamphiphobic coating for efficient corrosion protection of magnesium alloy. Journal of Colloid and Interface Science, 2020, 575, 140-149.	9.4	80
33	A separator based on natural illite/smectite clay for highly stable lithium-sulfur batteries. Journal of Colloid and Interface Science, 2020, 576, 404-411.	9.4	22
34	A waterborne superLEphilic and thermostable separator based on natural clay nanorods for high-voltage lithium-ion batteries. Materials Today Energy, 2020, 16, 100420.	4.7	21
35	Highly transparent superamphiphobic surfaces by elaborate microstructure regulation. Journal of Colloid and Interface Science, 2019, 554, 250-259.	9.4	27
36	Totally Waterborne and Highly Durable Superamphiphobic Coatings for Antiâ€Icing and Anticorrosion. Advanced Materials Interfaces, 2019, 6, 1901255.	3.7	71

#	Article	IF	CITATIONS
37	Maya Blue Pigments Derived From Clay Minerals. , 2019, , 627-661.		1
38	Photochromic and super anti-wetting coatings based on natural nanoclays. Journal of Materials Chemistry A, 2019, 7, 3120-3127.	10.3	37
39	Superamphiphobic Cu/CuO Micropillar Arrays with High Repellency Towards Liquids of Extremely High Viscosity and Low Surface Tension. Scientific Reports, 2019, 9, 702.	3.3	10
40	Environmentally benign and durable superhydrophobic coatings based on SiO2 nanoparticles and silanes. Journal of Colloid and Interface Science, 2019, 542, 8-14.	9.4	71
41	Strong, compressible, bendable and stretchable silicone sponges by solvent-controlled hydrolysis and polycondensation of silanes. Journal of Colloid and Interface Science, 2019, 540, 554-562.	9.4	37
42	Precise regulation of the selectivity of supported nano-Pd catalysts using polysiloxane coatings with tunable surface wettability. Chemical Communications, 2019, 55, 8305-8308.	4.1	15
43	A SuperLEphilic/Superhydrophobic and Thermostable Separator Based on Silicone Nanofilaments for Li Metal Batteries. IScience, 2019, 16, 420-432.	4.1	35
44	Adsorption of DNA by using polydopamine modified magnetic nanoparticles based on solid-phase extraction. Analytical Biochemistry, 2019, 579, 9-17.	2.4	32
45	Durable superhydrophobic glass wool@polydopamine@PDMS for highly efficient oil/water separation. Journal of Colloid and Interface Science, 2019, 544, 257-265.	9.4	46
46	Clay-based superamphiphobic coatings with low sliding angles for viscous liquids. Journal of Colloid and Interface Science, 2019, 540, 228-236.	9.4	30
47	Durable and fluorine-free superhydrophobic coatings from palygorskite-rich spent bleaching earth. Applied Clay Science, 2018, 157, 237-247.	5.2	14
48	Effects of modification of palygorskite on superamphiphobicity and microstructure of palygorskite@fluorinated polysiloxane superamphiphobic coatings. Applied Clay Science, 2018, 160, 144-152.	5.2	27
49	Superhydrophobic coatings with high repellency to daily consumed liquid foods based on food grade waxes. Journal of Colloid and Interface Science, 2018, 515, 255-263.	9.4	75
50	Superamphiphobic Coatings with Low Sliding Angles from Attapulgite/Carbon Composites. Advanced Materials Interfaces, 2018, 5, 1701520.	3.7	22
51	Removal of Organic Pollutants from Water Using Superwetting Materials. Chemical Record, 2018, 18, 118-136.	5.8	61
52	Scalable Preparation of Superamphiphobic Coatings with Ultralow Sliding Angles and High Liquid Impact Resistance. ACS Applied Materials & Interfaces, 2018, 10, 41878-41882.	8.0	47
53	Totally Waterborne, Nonfluorinated, Mechanically Robust, and Self-Healing Superhydrophobic Coatings for Actual Anti-Icing. ACS Applied Materials & Interfaces, 2018, 10, 39391-39399.	8.0	180
54	Highly Stable Lithium–Sulfur Batteries Based on Laponite Nanosheet oated Celgard Separators. Advanced Energy Materials, 2018, 8, 1801778.	19.5	111

#	Article	IF	CITATIONS
55	Mechanically Robust and Thermally Stable Colorful Superamphiphobic Coatings. Frontiers in Chemistry, 2018, 6, 144.	3.6	13
56	Carbon Composites: Superamphiphobic Coatings with Low Sliding Angles from Attapulgite/Carbon Composites (Adv. Mater. Interfaces 9/2018). Advanced Materials Interfaces, 2018, 5, 1870045.	3.7	0
57	A comparative study about superamphiphobicity and stability of superamphiphobic coatings based on Palygorskite. Applied Clay Science, 2018, 165, 8-16.	5.2	25
58	Biomimetic Super Anti-Wetting Coatings from Natural Materials: Superamphiphobic Coatings Based on Nanoclays. Scientific Reports, 2018, 8, 12062.	3.3	24
59	Green Synthesis of Ant Nest-Inspired Superelastic Silicone Aerogels. ACS Sustainable Chemistry and Engineering, 2018, 6, 11222-11227.	6.7	22
60	Attapulgite: from clay minerals to functional materials. Scientia Sinica Chimica, 2018, 48, 1432-1451.	0.4	9
61	Pressure-Sensitive and Conductive Carbon Aerogels from Poplars Catkins for Selective Oil Absorption and Oil/Water Separation. ACS Applied Materials & amp; Interfaces, 2017, 9, 18001-18007.	8.0	173
62	Transparent and durable superhydrophobic coatings for anti-bioadhesion. Journal of Colloid and Interface Science, 2017, 501, 222-230.	9.4	51
63	Compressible and conductive carbon aerogels from waste paper with exceptional performance for oil/water separation. Journal of Materials Chemistry A, 2017, 5, 14858-14864.	10.3	144
64	Colorful Superamphiphobic Coatings with Low Sliding Angles and High Durability Based on Natural Nanorods. ACS Applied Materials & Interfaces, 2017, 9, 1941-1952.	8.0	88
65	Durable, Transparent, and Hot Liquid Repelling Superamphiphobic Coatings from Polysiloxane-Modified Multiwalled Carbon Nanotubes. Langmuir, 2017, 33, 510-518.	3.5	77
66	Superhydrophobic Coatings: Waterborne Nonfluorinated Superhydrophobic Coatings with Exceptional Mechanical Durability Based on Natural Nanorods (Adv. Mater. Interfaces 19/2017). Advanced Materials Interfaces, 2017, 4, .	3.7	0
67	Waterborne Nonfluorinated Superhydrophobic Coatings with Exceptional Mechanical Durability Based on Natural Nanorods. Advanced Materials Interfaces, 2017, 4, 1700723.	3.7	48
68	Durable superamphiphobic coatings repelling both cool and hot liquids based on carbon nanotubes. Journal of Colloid and Interface Science, 2017, 505, 622-630.	9.4	34
69	Solvatochromic Coatings with Self-Cleaning Property from Palygorskite@Polysiloxane/Crystal Violet Lactone. ACS Applied Materials & Interfaces, 2016, 8, 27346-27352.	8.0	22
70	Roles of silanes and silicones in forming superhydrophobic and superoleophobic materials. Journal of Materials Chemistry A, 2016, 4, 13677-13725.	10.3	215
71	Superamphiphobic, Magnetic, and Elastic Silicone Sponges with Excellent Temperature Stability. Advanced Materials Interfaces, 2016, 3, 1600517.	3.7	17
72	Preparation of pH- and magnetism-responsive sodium alginate/Fe3O4@HNTs nanocomposite beads for controlled release of granulysin. RSC Advances, 2016, 6, 111747-111753.	3.6	10

#	Article	IF	CITATIONS
73	From Maya blue to biomimetic pigments: durable biomimetic pigments with self-cleaning property. Journal of Materials Chemistry A, 2016, 4, 901-907.	10.3	74
74	Durable and self-healing superamphiphobic coatings repellent even to hot liquids. Chemical Communications, 2016, 52, 2744-2747.	4.1	198
75	Ultralight, compressible and multifunctional carbon aerogels based on natural tubular cellulose. Journal of Materials Chemistry A, 2016, 4, 2069-2074.	10.3	141
76	Semitransparent superoleophobic coatings with low sliding angles for hot liquids based on silica nanotubes. Journal of Materials Chemistry A, 2016, 4, 953-960.	10.3	44
77	Palygorskite-based hybrid fluorescent pigment: Preparation, spectroscopic characterization and environmental stability. Microporous and Mesoporous Materials, 2016, 224, 107-115.	4.4	16
78	Palygorskite@Fe ₃ O ₄ @polyperfluoroalkylsilane nanocomposites for superoleophobic coatings and magnetic liquid marbles. Journal of Materials Chemistry A, 2016, 4, 5859-5868.	10.3	38
79	Dopamine-mediated fabrication of ultralight graphene aerogels with low volume shrinkage. Journal of Materials Chemistry A, 2016, 4, 512-518.	10.3	70
80	Antibioadhesive Superhydrophobic Syringe Needles Inspired by Mussels and Lotus Leafs. Advanced Materials Interfaces, 2015, 2, 1500019.	3.7	33
81	Polysiloxane/multiwalled carbon nanotubes nanocomposites and their applications as ultrastable, healable and superhydrophobic coatings. Carbon, 2015, 93, 648-658.	10.3	66
82	Magnetic, Durable, and Superhydrophobic Polyurethane@Fe ₃ O ₄ @SiO ₂ @Fluoropolymer Sponges for Selective Oil Absorption and Oil/Water Separation. ACS Applied Materials & Interfaces, 2015, 7, 4936-4946.	8.0	407
83	Gram-scale synthesis of coordination polymer nanodots with renal clearance properties for cancer theranostic applications. Nature Communications, 2015, 6, 8003.	12.8	225
84	Facile preparation of stable palygorskite/methyl violet@SiO2 "Maya Violet―pigment. Journal of Colloid and Interface Science, 2015, 457, 254-263.	9.4	33
85	Learning from ancient Maya: Preparation of stable palygorskite/methylene blue@SiO2 Maya Blue-like pigment. Microporous and Mesoporous Materials, 2015, 211, 124-133.	4.4	39
86	Effects of Size, Shape, Surface Charge and Functionalization on Cytotoxicity of Gold Nanoparticles. Nano LIFE, 2015, 05, 1540003.	0.9	8
87	Water-dispersible and stable fluorescent Maya Blue-like pigments. RSC Advances, 2015, 5, 35010-35016.	3.6	5
88	Mussel and fish scale-inspired underwater superoleophobic kapok membranes for continuous and simultaneous removal of insoluble oils and soluble dyes in water. Journal of Materials Chemistry A, 2015, 3, 18475-18482.	10.3	88
89	A comparative study about adsorption of natural palygorskite for methylene blue. Chemical Engineering Journal, 2015, 262, 390-398.	12.7	153
90	Facile preparation of stable palygorskite/cationic red X-GRL@SiO2"Maya Red―pigments. RSC Advances, 2014, 4, 63485-63493.	3.6	16

#	Article	IF	CITATIONS
91	Durable Superhydrophobic/Superoleophilic Polyurethane Sponges Inspired by Mussel and Lotus Leaf for the Selective Removal of Organic Pollutants from Water. ChemPlusChem, 2014, 79, 850-856.	2.8	66
92	Superhydrophobic Gated Polyorganosilanes/Halloysite Nanocontainers for Sustained Drug Release. Advanced Materials Interfaces, 2014, 1, 1300136.	3.7	22
93	Evaporation-Induced Transition from <i>Nepenthes</i> Pitcher-Inspired Slippery Surfaces to Lotus Leaf-Inspired Superoleophobic Surfaces. Langmuir, 2014, 30, 14292-14299.	3.5	82
94	Adsorption and release of ofloxacin from acid- and heat-treated halloysite. Colloids and Surfaces B: Biointerfaces, 2014, 113, 51-58.	5.0	86
95	Preparation and characterization of chitosan–poly(vinyl alcohol)/bentonite nanocomposites for adsorption of Hg(II) ions. Chemical Engineering Journal, 2014, 251, 404-412.	12.7	110
96	Facile preparation of magnetic 2-hydroxypropyltrimethyl ammonium chloride chitosan/Fe3O4/halloysite nanotubes microspheres for the controlled release of ofloxacin. Carbohydrate Polymers, 2014, 102, 877-883.	10.2	47
97	Mechanical- and oil-durable superhydrophobic polyester materials for selective oil absorption and oil/water separation. Journal of Colloid and Interface Science, 2014, 413, 112-117.	9.4	98
98	Magnetically driven super durable superhydrophobic polyester materials for oil/water separation. Polymer Chemistry, 2014, 5, 2382.	3.9	90
99	<i>Nepenthes</i> Pitcher Inspired Antiâ€Wetting Silicone Nanofilaments Coatings: Preparation, Unique Antiâ€Wetting and Selfâ€Cleaning Behaviors. Advanced Functional Materials, 2014, 24, 1074-1080.	14.9	156
100	Universal self-assembly of organosilanes with long alkyl groups into silicone nanofilaments. Polymer Chemistry, 2014, 5, 1132-1139.	3.9	24
101	Superparamagnetic sandwich structured silver/halloysite nanotube/Fe ₃ O ₄ nanocomposites for 4-nitrophenol reduction. RSC Advances, 2014, 4, 39439-39445.	3.6	30
102	Durable superhydrophobic/superoleophilic PDMS sponges and their applications in selective oil absorption and in plugging oil leakages. Journal of Materials Chemistry A, 2014, 2, 18281-18287.	10.3	259
103	Magnetic, superhydrophobic and durable silicone sponges and their applications in removal of organic pollutants from water. Chemical Communications, 2014, 50, 7831-7833.	4.1	131
104	Solvent-controlled growth of silicone nanofilaments. RSC Advances, 2014, 4, 33424-33430.	3.6	7
105	Facile preparation of super durable superhydrophobic materials. Journal of Colloid and Interface Science, 2014, 432, 31-42.	9.4	70
106	Superwetting Double-Layer Polyester Materials for Effective Removal of Both Insoluble Oils and Soluble Dyes in Water. ACS Applied Materials & Interfaces, 2014, 6, 11581-11588.	8.0	109
107	Freeze-drying: A versatile method to overcome re-aggregation and improve dispersion stability of palygorskite for sustained release of ofloxacin. Applied Clay Science, 2014, 87, 7-13.	5.2	25
108	Universal dispersion of single-walled carbon nanotubes in the liquid phase inspired by Maya Blue. Journal of Materials Chemistry A, 2013, 1, 10626.	10.3	9

#	Article	IF	CITATIONS
109	Facile preparation of durable and robust superhydrophobic textiles by dip coating in nanocomposite solution of organosilanes. Chemical Communications, 2013, 49, 11509.	4.1	147
110	Durable Superhydrophobic Surfaces Prepared by Spray Coating of Polymerized Organosilane/Attapulgite Nanocomposites. ChemPlusChem, 2013, 78, 1503-1509.	2.8	35
111	Alkali activation of halloysite for adsorption and release of ofloxacin. Applied Surface Science, 2013, 287, 54-61.	6.1	110
112	Spray-dried magnetic chitosan/Fe3O4/halloysite nanotubes/ofloxacin microspheres for sustained release of ofloxacin. RSC Advances, 2013, 3, 23423.	3.6	25
113	Mimic nature, beyond nature: facile synthesis of durable superhydrophobic textiles using organosilanes. Journal of Materials Chemistry B, 2013, 1, 4756.	5.8	91
114	In situ generation of sodium alginate/hydroxyapatite/halloysite nanotubes nanocomposite hydrogel beads as drug-controlled release matrices. Journal of Materials Chemistry B, 2013, 1, 6261.	5.8	100
115	Preparation, Characterization, and Drug-Release Behaviors of a pH-Sensitive Composite Hydrogel Bead Based on Guar Gum, Attapulgite, and Sodium Alginate. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013, 62, 369-376.	3.4	52
116	Silica/Silicone Nanofilament Hybrid Coatings with Almost Perfect Superhydrophobicity. ChemPhysChem, 2013, 14, 1646-1651.	2.1	25
117	Effect of number of grindings of attapulgite on enhanced swelling properties of the superabsorbent nanocomposites. Journal of Composite Materials, 2013, 47, 969-978.	2.4	12
118	pH-sensitive sodium alginate/calcined hydrotalcite hybrid beads for controlled release of diclofenac sodium. Drug Development and Industrial Pharmacy, 2012, 38, 728-734.	2.0	14
119	Disaggregation of palygorskite crystal bundles via high-pressure homogenization. Applied Clay Science, 2011, 54, 118-123.	5.2	61
120	Polyester Materials with Superwetting Silicone Nanofilaments for Oil/Water Separation and Selective Oil Absorption. Advanced Functional Materials, 2011, 21, 4699-4704.	14.9	746
121	Superoleophobic Coatings with Ultralow Sliding Angles Based on Silicone Nanofilaments. Angewandte Chemie - International Edition, 2011, 50, 6652-6656.	13.8	377
122	Fast removal of methylene blue from aqueous solution by adsorption onto chitosan-g-poly (acrylic) Tj ETQq0 0 0	rg&T/Ove	rlock 10 Tf 5
123	Rapid removal of Pb(II) from aqueous solution by chitosanâ€ <i>g</i> â€poly(acrylic) Tj ETQq1 1 0.784314 rgBT / 2011, 32, 523-531.	Overlock 1 2.2	0 Tf 50 187 15
124	Study on superabsorbent composite XXV. Synthesis, characterization, and swelling behaviors of poly(acrylic acidâ€ <i>co</i> â€ <i>N</i> â€acryloylmorpholine)/attapulgite superabsorbent composites. Polymer Composites, 2010, 31, 691-699.	4.6	9
125	Preparation and swelling properties of pHâ€sensitive sodium alginate/layered double hydroxides hybrid beads for controlled release of diclofenac sodium. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 92B, 205-214.	3.4	48
126	In situ generation of sodium alginate/hydroxyapatite nanocomposite beads as drug-controlled release	8.3	198

In situ generation of sodium alginate/hydroxyap matrices. Acta Biomaterialia, 2010, 6, 445-454. 126 ւի

#	Article	IF	CITATIONS
127	XRF and nitrogen adsorption studies of acid-activated palygorskite. Clay Minerals, 2010, 45, 145-156.	0.6	41
128	Adsorption of Pb(II) from Aqueous Solution by Chitosan- <i>g</i> -poly(acrylic acid)/Attapulgite/Sodium Humate Composite Hydrogels. Journal of Chemical & Engineering Data, 2010, 55, 2379-2384.	1.9	77
129	Preparation and swelling properties of pH-sensitive composite hydrogel beads based on chitosan-g-poly (acrylic acid)/vermiculite and sodium alginate for diclofenac controlled release. International Journal of Biological Macromolecules, 2010, 46, 356-362.	7.5	138
130	Preparation and characterization of a novel pH-sensitive chitosan-g-poly (acrylic) Tj ETQq0 0 0 rgBT /Overlock 10 sodium. Carbohydrate Polymers, 2009, 78, 731-737.	Tf 50 627 10.2	Td (acid)/att 252
131	Fast removal of ammonium nitrogen from aqueous solution using chitosan-g-poly(acrylic) Tj ETQq1 1 0.784314 r	gBT /Over	loçk 10 Tf 5(
132	pH- and thermo-responsive dispersion of single-walled carbon nanotubes modified with poly(N-isopropylacrylamide-co-acrylic acid). Journal of Colloid and Interface Science, 2009, 334, 212-216.	9.4	24
133	Preparation and swelling properties of superabsorbent nanocomposites based on natural guar gum and organo-vermiculite. Applied Clay Science, 2009, 46, 21-26.	5.2	52
134	Synergistic effects of Na+-montmorillonite and multi-walled carbon nanotubes on mechanical properties of chitosan film. EXPRESS Polymer Letters, 2009, 3, 302-308.	2.1	29
135	Removal of methylene blue from aqueous solution using chitosan-g-poly(acrylic) Tj ETQq1 1 0.784314 rgBT /Over Engineering Aspects, 2008, 322, 47-53.	rlock 10 T 4.7	f 50 427 Td 301
136	Study on superabsorbent composites XVII. Preparation and characterization of poly(acrylic) Tj ETQq0 0 0 rgBT /O	verlock 10 3.0) Tf 50 382 1
137	Preparation and Properties of Chitosan-g-poly(acrylic acid)/Montmorillonite Superabsorbent Nanocomposite via in Situ Intercalative Polymerization. Industrial & Engineering Chemistry Research, 2007, 46, 2497-2502.	3.7	139
138	Preparation and slow-release property of a poly(acrylic acid)/attapulgite/sodium humate superabsorbent composite. Journal of Applied Polymer Science, 2007, 103, 37-45.	2.6	45
139	Study on superabsorbent composite. VIII. Effects of acid- and heat-activated attapulgite on water absorbency of polyacrylamide/attapulgite. Journal of Applied Polymer Science, 2007, 103, 2419-2424.	2.6	15
140	A Novel <i>N</i> â€Succinylchitosanâ€ <i>graft</i> â€Polyacrylamide/Attapulgite Composite Hydrogel Prepared through Inverse Suspension Polymerization. Macromolecular Materials and Engineering, 2007, 292, 962-969.	3.6	47
141	Utilization of starch and clay for the preparation of superabsorbent composite. Bioresource Technology, 2007, 98, 327-332.	9.6	170
142	Manipulated dispersion of carbon nanotubes with derivatives of chitosan. Carbon, 2007, 45, 1917-1920.	10.3	29
143	Synthesis and characterization of chitosan-g-poly(acrylic acid)/attapulgite superabsorbent composites. Carbohydrate Polymers, 2007, 68, 367-374.	10.2	315
144	Study on superabsorbent composite XVI. Synthesis, characterization and swelling behaviors of poly(sodium acrylate)/vermiculite superabsorbent composites. European Polymer Journal, 2007, 43, 1691-1698.	5.4	124

#	Article	IF	CITATIONS
145	Study on superabsorbent composites. IX: Synthesis, characterization and swelling behaviors of polyacrylamide/clay composites based on various clays. Reactive and Functional Polymers, 2007, 67, 737-745.	4.1	134
146	Study on superabsorbent composite. XI. Effect of thermal treatment and acid activation of attapulgite on water absorbency of poly(acrylic acid)/attapulgite superabsorbent composite. Polymer Composites, 2007, 28, 397-404.	4.6	29
147	Study on superabsorbent composite. XV. Effects of ion-exchanged attapulgite on water absorbency of superabsorbent composites. Polymer Composites, 2007, 28, 208-213.	4.6	9
148	Superabsorbent composite. XIII. Effects of Al3+-attapulgite on hydrogel strength and swelling behaviors of poly(acrylic acid)/Al3+-attapulgite superabsorbent composites. Polymer Engineering and Science, 2007, 47, 619-624.	3.1	17
149	Preparation, Swelling Behaviors, and Slow-Release Properties of a Poly(acrylic) Tj ETQq1 1 0.784314 rgBT /Overloo Research, 2006, 45, 48-53.	ck 10 Tf 50 3.7	D 587 Td (ac 55
150	Preparation, swelling behaviors and application of polyacrylamide/attapulgite superabsorbent composites. Polymers for Advanced Technologies, 2006, 17, 12-19.	3.2	34
151	Study on superabsorbent composite—VII. Effects of organification of attapulgite on swelling behaviors of poly(acrylic acid-co-acrylamide)/sodium humate/organo-attapulgite composite. Polymers for Advanced Technologies, 2006, 17, 379-385.	3.2	25
152	Superabsorbent composite. X. Effects of saponification on properties of polyacrylamide/attapulgite. Polymer Engineering and Science, 2006, 46, 1762-1767.	3.1	14
153	Study on superabsorbent composite. IV. Effects of organification degree of attapulgite on swelling behaviors of polyacrylamide/organo-attapulgite composites. European Polymer Journal, 2006, 42, 101-108.	5.4	49
154	Study on superabsorbent composite. VI. Preparation, characterization and swelling behaviors of starch phosphate-graft-acrylamide/attapulgite superabsorbent composite. Carbohydrate Polymers, 2006, 65, 150-158.	10.2	103
155	Synthesis and characterization of multifunctional poly(acrylic acid-co-acrylamide)/sodium humate superabsorbent composite. Reactive and Functional Polymers, 2006, 66, 747-756.	4.1	71
156	Preparation and Swelling Behavior of Fast-Swelling Superabsorbent Hydrogels Based On Starch-g-Poly(acrylic acid-co-sodium acrylate). Macromolecular Materials and Engineering, 2006, 291, 612-620.	3.6	47
157	Study on Superabsorbent Composite, 14. Macromolecular Materials and Engineering, 2006, 291, 1529-1538.	3.6	31
158	Study on superabsorbent composite. III. Swelling behaviors of polyacrylamide/attapulgite composite based on acidified attapulgite and organo-attapulgite. European Polymer Journal, 2005, 41, 2434-2442.	5.4	102
159	Synthesis, characterization and water absorbency properties of poly(acrylic acid)/sodium humate superabsorbent composite. Polymers for Advanced Technologies, 2005, 16, 675-680.	3.2	55
160	Study on superabsorbent composite. V. Synthesis, swelling behaviors and application of poly(acrylic) Tj ETQq0 0 C) rgBT /Ov 3.2	erlock 10 Tf 73

Technologies, 2005, 16, 813-820.