Ji-Feng Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4147475/publications.pdf Version: 2024-02-01

LI-FENC CUO

#	Article	IF	CITATIONS
1	Expansion of Human-Specific GGC Repeat in Neuronal Intranuclear Inclusion Disease-Related Disorders. American Journal of Human Genetics, 2019, 105, 166-176.	6.2	212
2	Expansion of GGC repeat in the human-specific NOTCH2NLC gene is associated with essential tremor. Brain, 2020, 143, 222-233.	7.6	139
3	Microglial autophagy defect causes parkinson disease-like symptoms by accelerating inflammasome activation in mice. Autophagy, 2020, 16, 2193-2205.	9.1	134
4	Recent Advances in Biomarkers for Parkinson's Disease. Frontiers in Aging Neuroscience, 2018, 10, 305.	3.4	120
5	<scp>PINK</scp> 1 phosphorylates Drp1 ^{S616} to regulate mitophagyâ€independent mitochondrial dynamics. EMBO Reports, 2020, 21, e48686.	4.5	112
6	The role of genetics in Parkinson's disease: a large cohort study in Chinese mainland population. Brain, 2020, 143, 2220-2234.	7.6	97
7	MicroRNA-26a/Death-Associated Protein KinaseÂ1 Signaling Induces Synucleinopathy andÂDopaminergic Neuron Degeneration in Parkinson's Disease. Biological Psychiatry, 2019, 85, 769-781.	1.3	92
8	Hypomethylation of SNCA in blood of patients with sporadic Parkinson's disease. Journal of the Neurological Sciences, 2014, 337, 123-128.	0.6	90
9	Coding mutations inNUS1contribute to Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11567-11572.	7.1	78
10	PLA2G6-Associated Neurodegeneration (PLAN): Review of Clinical Phenotypes and Genotypes. Frontiers in Neurology, 2018, 9, 1100.	2.4	75
11	Polygenic determinants of Parkinson's disease in a Chinese population. Neurobiology of Aging, 2015, 36, 1765.e1-1765.e6.	3.1	73
12	Integrated Genetic Analysis of Racial Differences of Common GBA Variants in Parkinson's Disease: A Meta-Analysis. Frontiers in Molecular Neuroscience, 2018, 11, 43.	2.9	71
13	UBA5 Mutations Cause a New Form of Autosomal Recessive Cerebellar Ataxia. PLoS ONE, 2016, 11, e0149039.	2.5	68
14	Mutation analysis of <i>Parkin</i> , <i>PINK1</i> , <i>DJâ€1</i> and <i>ATP13A2</i> genes in Chinese patients with autosomal recessive earlyâ€onset Parkinsonism. Movement Disorders, 2008, 23, 2074-2079.	3.9	61
15	Investigation of TREM2, PLD3, and UNC5C variants in patients with Alzheimer's disease from mainland China. Neurobiology of Aging, 2014, 35, 2422.e9-2422.e11.	3.1	61
16	Identifying the presence of Parkinson's disease using low-frequency fluctuations in BOLD signals. Neuroscience Letters, 2017, 645, 1-6.	2.1	59
17	BAG5 Protects against Mitochondrial Oxidative Damage through Regulating PINK1 Degradation. PLoS ONE, 2014, 9, e86276.	2.5	56
18	BAG2 structure, function and involvement in disease. Cellular and Molecular Biology Letters, 2016, 21, 18	7.0	54

#	Article	IF	CITATIONS
19	Glucocerebrosidase Gene L444P mutation is a risk factor for Parkinson's disease in Chinese population. Movement Disorders, 2010, 25, 1005-1011.	3.9	50
20	Parkinson's Disease and Cognitive Impairment. Parkinson's Disease, 2016, 2016, 1-8.	1.1	50
21	Mutation analysis of Parkin, PINK1 and DJ-1 genes in Chinese patients with sporadic early onset parkinsonism. Journal of Neurology, 2010, 257, 1170-1175.	3.6	46
22	Analysis of SCA2 and SCA3/MJD repeats in Parkinson's disease in mainland China: Genetic, clinical, and positron emission tomography findings. Movement Disorders, 2009, 24, 2007-2011.	3.9	43
23	Familial paroxysmal kinesigenic dyskinesia is associated with mutations in the KCNA1 gene. Human Molecular Genetics, 2018, 27, 625-637.	2.9	43
24	Clinical Heterogeneity Among LRRK2 Variants in Parkinson's Disease: A Meta-Analysis. Frontiers in Aging Neuroscience, 2018, 10, 283.	3.4	40
25	Large Polyglutamine Repeats Cause Muscle Degeneration in SCA17 Mice. Cell Reports, 2015, 13, 196-208.	6.4	39
26	Effect of <i>GBA</i> Mutations on Phenotype of Parkinson's Disease: A Study on Chinese Population and a <i>Meta-Analysis</i> . Parkinson's Disease, 2015, 2015, 1-10.	1.1	38
27	Clinical Features and Correlates of Excessive Daytime Sleepiness in Parkinson's Disease. Frontiers in Neurology, 2019, 10, 121.	2.4	38
28	Variant in the 3′ region of SNCA associated with Parkinson's disease and serum α-synuclein levels. Journal of Neurology, 2012, 259, 497-504.	3.6	37
29	A presenilin-1 mutation causes Alzheimer disease without affecting Notch signaling. Molecular Psychiatry, 2020, 25, 603-613.	7.9	37
30	Screening for two SNPs of LINGO1 gene in patients with essential tremor or sporadic Parkinson's disease in Chinese population. Neuroscience Letters, 2010, 481, 69-72.	2.1	35
31	C9orf72 mutation is rare in Alzheimer's disease, Parkinson's disease, and essential tremor in China. Frontiers in Cellular Neuroscience, 2013, 7, 164.	3.7	35
32	LRRK2 A419V variant is a risk factor for Parkinson's disease in Asian population. Neurobiology of Aging, 2015, 36, 2908.e11-2908.e15.	3.1	35
33	Lack of association between IL-10 and IL-18 gene promoter polymorphisms and Parkinson's disease with cognitive impairment in a Chinese population. Scientific Reports, 2016, 6, 19021.	3.3	35
34	Genetic analysis of N6-methyladenosine modification genes in Parkinson's disease. Neurobiology of Aging, 2020, 93, 143.e9-143.e13.	3.1	35
35	TMEM230 mutation analysis in Parkinson's disease in a Chinese population. Neurobiology of Aging, 2017, 49, 219.e1-219.e3.	3.1	34
36	The BAG2 protein stabilises PINK1 by decreasing its ubiquitination. Biochemical and Biophysical Research Communications, 2013, 441, 488-492.	2.1	32

#	Article	IF	CITATIONS
37	PINK1 kinase dysfunction triggers neurodegeneration in the primate brain without impacting mitochondrial homeostasis. Protein and Cell, 2022, 13, 26-46.	11.0	32
38	A Comprehensive Analysis of the Association Between SNCA Polymorphisms and the Risk of Parkinson's Disease. Frontiers in Molecular Neuroscience, 2018, 11, 391.	2.9	31
39	GCH1 variants contribute to the risk and earlier age-at-onset of Parkinson's disease: a two-cohort case-control study. Translational Neurodegeneration, 2020, 9, 31.	8.0	30
40	Lee Silverman Voice Treatment for dysarthria in patients with Parkinson's disease: a systematic review and metaâ€analysis. European Journal of Neurology, 2020, 27, 1957-1970.	3.3	30
41	A Meta-Analysis of <i>GBA</i> -Related Clinical Symptoms in Parkinson's Disease. Parkinson's Disease, 2018, 2018, 1-7.	1.1	29
42	Piperine ameliorates SCA17 neuropathology by reducing ER stress. Molecular Neurodegeneration, 2018, 13, 4.	10.8	29
43	The Phenotypes and Mechanisms of NOTCH2NLC-Related GGC Repeat Expansion Disorders: a Comprehensive Review. Molecular Neurobiology, 2022, 59, 523-534.	4.0	27
44	The contribution of GIGYF2 to Parkinson's disease: a meta-analysis. Neurological Sciences, 2015, 36, 2073-2079.	1.9	26
45	Olfactory Dysfunction Predicts Disease Progression in Parkinson's Disease: A Longitudinal Study. Frontiers in Neuroscience, 2020, 14, 569777.	2.8	25
46	Clinical features and [11C]-CFT PET analysis of PARK2, PARK6, PARK7-linked autosomal recessive early onset Parkinsonism. Neurological Sciences, 2011, 32, 35-40.	1.9	24
47	The rs3756063 polymorphism is associated with SNCA methylation in the Chinese Han population. Journal of the Neurological Sciences, 2016, 367, 11-14.	0.6	24
48	BAG5 Interacts with DJ-1 and Inhibits the Neuroprotective Effects of DJ-1 to Combat Mitochondrial Oxidative Damage. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-10.	4.0	24
49	Hsp70 participates in PINK1-mediated mitophagy by regulating the stability of PINK1. Neuroscience Letters, 2018, 662, 264-270.	2.1	24
50	A novel presenilin 1 mutation (Ser169del) in a Chinese family with early-onset Alzheimer's disease. Neuroscience Letters, 2010, 468, 34-37.	2.1	23
51	A neurophysiological profile in Parkinson's disease with mild cognitive impairment and dementia in China. Journal of Clinical Neuroscience, 2015, 22, 981-985.	1.5	23
52	A novel LRRK2 mutation in a mainland Chinese patient with familial Parkinson's disease. Neuroscience Letters, 2010, 468, 198-201.	2.1	22
53	Role of periodically rotated overlapping parallel lines with enhanced reconstruction diffusion-weighted imaging in correcting distortion and evaluating head and neck masses using 3 T MRI. Clinical Radiology, 2014, 69, 403-409.	1.1	22
54	Mutation analysis of CHCHD2 gene in Chinese familial Parkinson's disease. Neurobiology of Aging, 2015, 36, 3117.e7-3117.e8.	3.1	22

#	Article	IF	CITATIONS
55	Deficiency in endocannabinoid synthase DAGLB contributes to early onset Parkinsonism and murine nigral dopaminergic neuron dysfunction. Nature Communications, 2022, 13, .	12.8	22
56	Rare GCH1 heterozygous variants contributing to Parkinson's disease. Brain, 2017, 140, e41-e41.	7.6	21
57	The Progress of Induced Pluripotent Stem Cells as Models of Parkinson's Disease. Stem Cells International, 2016, 2016, 1-6.	2.5	19
58	Genotype and phenotype distribution of 435 patients with Charcot–Marie–Tooth disease from central south China. European Journal of Neurology, 2021, 28, 3774-3783.	3.3	19
59	Identification of Alzheimer's disease–associated rare coding variants in the ECE2 gene. JCI Insight, 2020, 5, .	5.0	19
60	Synergistic Toxicity of Polyglutamine-Expanded TATA-Binding Protein in Glia and Neuronal Cells: Therapeutic Implications for Spinocerebellar Ataxia 17. Journal of Neuroscience, 2017, 37, 9101-9115.	3.6	18
61	Exon dosage analysis of parkin gene in Chinese sporadic Parkinson's disease. Neuroscience Letters, 2015, 604, 47-51.	2.1	17
62	Systematically analyzing rare variants of autosomal-dominant genes for sporadic Parkinson's disease in a Chinese cohort. Neurobiology of Aging, 2019, 76, 215.e1-215.e7.	3.1	17
63	R492X mutation in PTEN-induced putative kinase 1 induced cellular mitochondrial dysfunction and oxidative stress. Brain Research, 2010, 1351, 229-237.	2.2	16
64	The GBA, DYRK1A and MS4A6A polymorphisms influence the age at onset of Chinese Parkinson patients. Neuroscience Letters, 2016, 621, 133-136.	2.1	16
65	Genetic Analysis of <i> LRRK2</i> R1628P in Parkinson's Disease in Asian Populations. Parkinson's Disease, 2017, 2017, 1-6.	1.1	16
66	Gene4PD: A Comprehensive Genetic Database of Parkinson's Disease. Frontiers in Neuroscience, 2021, 15, 679568.	2.8	16
67	VPS35 gene variants are not associated with Parkinson's disease in the mainland Chinese population. Parkinsonism and Related Disorders, 2012, 18, 983-985.	2.2	15
68	Analysis of several loci from genome-wide association studies in Parkinson's disease in mainland China. Neuroscience Letters, 2015, 587, 68-71.	2.1	15
69	Genome-wide analysis of DNA methylation during antagonism of DMOG to MnCl2-induced cytotoxicity in the mouse substantia nigra. Scientific Reports, 2016, 6, 28933.	3.3	15
70	Factors Associated With Dyskinesia in Parkinson's Disease in Mainland China. Frontiers in Neurology, 2019, 10, 477.	2.4	15
71	Association of HIF1A and Parkinson's disease in a Han Chinese population demonstrated by molecular inversion probe analysis. Neurological Sciences, 2019, 40, 1927-1931.	1.9	15
72	Characteristics of Autonomic Dysfunction in Parkinson's Disease: A Large Chinese Multicenter Cohort Study. Frontiers in Aging Neuroscience, 2021, 13, 761044.	3.4	15

#	Article	IF	CITATIONS
73	Mutation analysis of LRRK2, SCNA, UCHL1, HtrA2 and GIGYF2 genes in Chinese patients with autosomal dorminant Parkinson's disease. Neuroscience Letters, 2012, 516, 207-211.	2.1	14
74	Novel variants in PAX6 gene caused congenital aniridia in two Chinese families. Eye, 2017, 31, 956-961.	2.1	14
75	Assessment of Three New Loci from Genome-wide Association Study in Essential Tremor in Chinese population. Scientific Reports, 2017, 7, 7981.	3.3	14
76	Identifying mild-moderate Parkinson's disease using whole-brain functional connectivity. Clinical Neurophysiology, 2018, 129, 2507-2516.	1.5	14
77	Biallelic loss-of-function variants in NEMF cause central nervous system impairment and axonal polyneuropathy. Human Genetics, 2021, 140, 579-592.	3.8	14
78	Assessment of RIT2 rs12456492 association with Parkinson's disease in Mainland China. Neurobiology of Aging, 2015, 36, 1600.e9-1600.e11.	3.1	13
79	The Association between <i>C9orf72</i> Repeats and Risk of Alzheimer's Disease and Amyotrophic Lateral Sclerosis: A Meta-Analysis. Parkinson's Disease, 2016, 2016, 1-8.	1.1	13
80	Prediction of orthostatic hypotension in multiple system atrophy and Parkinson disease. Scientific Reports, 2016, 6, 21649.	3.3	13
81	Research advances on neurite outgrowth inhibitor B receptor. Journal of Cellular and Molecular Medicine, 2020, 24, 7697-7705.	3.6	13
82	The Chinese Parkinson's Disease Registry (<scp>CPDR</scp>): Study Design and Baseline Patient Characteristics. Movement Disorders, 2022, 37, 1335-1345.	3.9	13
83	Relationship between Alzheimer's disease GWAS-linked top hits and risk of Parkinson's disease with or without cognitive decline: a Chinese population-based study. Neurobiology of Aging, 2016, 39, 217.e9-217.e11.	3.1	12
84	Novel mutations in ADSL for Adenylosuccinate Lyase Deficiency identified by the combination of Trio-WES and constantly updated guidelines. Scientific Reports, 2017, 7, 1625.	3.3	12
85	The Effects of SNCA rs894278 on Resting-State Brain Activity in Parkinson's Disease. Frontiers in Neuroscience, 2019, 13, 47.	2.8	12
86	Study on the Clinical Features of Parkinson's Disease With Probable Rapid Eye Movement Sleep Behavior Disorder. Frontiers in Neurology, 2020, 11, 979.	2.4	12
87	Different iron deposition patterns in akinetic/rigid-dominant and tremor-dominant Parkinson's disease. Clinical Neurology and Neurosurgery, 2020, 198, 106181.	1.4	12
88	The single nucleotide polymorphism Rs12817488 is associated with Parkinson's disease in the Chinese population. Journal of Clinical Neuroscience, 2015, 22, 1002-1004.	1.5	11
89	Ethnicity-specific and overlapping alterations of brain hydroxymethylome in Alzheimer's disease. Human Molecular Genetics, 2020, 29, 149-158.	2.9	11
90	The Association Between Lysosomal Storage Disorder Genes and Parkinson's Disease: A Large Cohort Study in Chinese Mainland Population. Frontiers in Aging Neuroscience, 2021, 13, 749109.	3.4	11

#	Article	IF	CITATIONS
91	Genetic analysis of DNA methylation and hydroxymethylation genes in Parkinson's disease. Neurobiology of Aging, 2019, 84, 242.e13-242.e16.	3.1	10
92	Association Between REM Sleep Behavior Disorder and Cognitive Dysfunctions in Parkinson's Disease: A Systematic Review and Meta-Analysis of Observational Studies. Frontiers in Neurology, 2020, 11, 577874.	2.4	10
93	Retinal Microvascular Density Was Associated With the Clinical Progression of Parkinson's Disease. Frontiers in Aging Neuroscience, 2022, 14, 818597.	3.4	10
94	Genetic Diagnosis of Two Dopa-Responsive Dystonia Families by Exome Sequencing. PLoS ONE, 2014, 9, e106388.	2.5	9
95	Association analysis of STK39, MCCC1/LAMP3 and sporadic PD in the Chinese Han population. Neuroscience Letters, 2014, 566, 206-209.	2.1	9
96	RAB39B gene mutations are not linked to familial Parkinson's disease in China. Scientific Reports, 2016, 6, 34502.	3.3	9
97	Preliminary Study of hsa-mir-626 Change in the Cerebrospinal Fluid in Parkinson's Disease. Neurology India, 2021, 69, 115.	0.4	9
98	Genetic Identification Is Critical for the Diagnosis of Parkinsonism: A Chinese Pedigree with Early Onset of Parkinsonism. PLoS ONE, 2015, 10, e0136245.	2.5	9
99	The BAG2 and BAG5 proteins inhibit the ubiquitination of pathogenic ataxin3-80Q. International Journal of Neuroscience, 2015, 125, 390-394.	1.6	8
100	Relationship between GWAS-linked three new loci in Essential tremor and risk of Parkinson's disease in Chinese population. Parkinsonism and Related Disorders, 2017, 43, 124-126.	2.2	8
101	Clinical characteristics of PD patients with LRRK2 G2385R and R1628P variants. Neuroscience Letters, 2018, 685, 185-189.	2.1	8
102	Genetic and Clinical Features in 24 Chinese Distal Hereditary Motor Neuropathy Families. Frontiers in Neurology, 2020, 11, 603003.	2.4	8
103	The Discriminative Power of Different Olfactory Domains in Parkinson's Disease. Frontiers in Neurology, 2020, 11, 420.	2.4	8
104	ATP10B variants in Parkinson's disease: a large cohort study in Chinese mainland population. Acta Neuropathologica, 2021, 141, 805-806.	7.7	8
105	Assessment of <scp>GGC</scp> Repeat Expansion in <scp><i>GIPC1</i></scp> in Patients with Parkinson's Disease. Movement Disorders, 2022, 37, 1557-1559.	3.9	8
106	Genetic Analysis of Six Transmembrane Protein Family Genes in Parkinson's Disease in a Large Chinese Cohort. Frontiers in Aging Neuroscience, 0, 14, .	3.4	8
107	Association study between SNP rs150689919 in the DNA demethylation gene, TET1, and Parkinson's disease in Chinese Han population. BMC Neurology, 2013, 13, 196.	1.8	7
108	Mutations analysis of RAB39B gene in Chinese early-onset Parkinson's disease. Parkinsonism and Related Disorders, 2016, 28, 157-158.	2.2	7

#	Article	IF	CITATIONS
109	Altered Functional Brain Connectomes between Sporadic and Familial Parkinson's Patients. Frontiers in Neuroanatomy, 2017, 11, 99.	1.7	7
110	<i>PSAP</i> variants in Parkinson's disease: a large cohort study in Chinese mainland population. Brain, 2021, 144, e25-e25.	7.6	7
111	Performance Comparison of Computational Methods for the Prediction of the Function and Pathogenicity of Non-Coding Variants. Genomics, Proteomics and Bioinformatics, 2023, 21, 649-661.	6.9	7
112	Alzheimer's disease susceptibility genes modify the risk of Parkinson disease and Parkinson's disease-associated cognitive impairment. Neuroscience Letters, 2018, 677, 55-59.	2.1	6
113	Impaired iPLA2β activity affects iron uptake and storage without iron accumulation: An in vitro study excluding decreased iPLA2β activity as the cause of iron deposition in PLAN. Brain Research, 2019, 1712, 25-33.	2.2	6
114	Association of rare heterozygous PLA2G6 variants with the risk of Parkinson's disease. Neurobiology of Aging, 2021, 101, 297.e5-297.e8.	3.1	6
115	Characterizing the Expression Patterns of Parkinson's Disease Associated Genes. Frontiers in Neuroscience, 2021, 15, 629156.	2.8	6
116	Involvement of Bcl-2-associated athanogene (BAG)-family proteins in the neuroprotection by rasagiline. International Journal of Clinical and Experimental Medicine, 2015, 8, 18158-64.	1.3	6
117	Constructing Prediction Models for Freezing of Gait by Nomogram and Machine Learning: A Longitudinal Study. Frontiers in Neurology, 2021, 12, 684044.	2.4	6
118	Genetic Analysis of Patients With Early-Onset Parkinson's Disease in Eastern China. Frontiers in Aging Neuroscience, 2022, 14, .	3.4	6
119	SNCA REP1 and Parkinson's disease. Neuroscience Letters, 2018, 682, 79-84.	2.1	5
120	No relationship between SRY variants and risk of Parkinson's disease in Chinese population. Neurobiology of Aging, 2021, 100, 119.e3-119.e6.	3.1	5
121	GPCards: An integrated database of genotype–phenotype correlations in human genetic diseases. Computational and Structural Biotechnology Journal, 2021, 19, 1603-1611.	4.1	5
122	<i>UQCRC1</i> variants in Parkinson's disease: a large cohort study in Chinese mainland population. Brain, 2021, 144, e54-e54.	7.6	5
123	Evaluating the role of ARSA in Chinese patients with Parkinson's disease. Neurobiology of Aging, 2022, 109, 269-272.	3.1	5
124	The macular inner plexiform layer thickness as an early diagnostic indicator for Parkinson's disease. Npj Parkinson's Disease, 2022, 8, .	5.3	5
125	Association between 1p13.3 genomic markers and coronary artery disease: a meta-analysis involving patients and controls. Genetics and Molecular Research, 2015, 14, 9092-9102.	0.2	4
126	Identification of Ser465 as a novel PINK1 autophosphorylation site. Translational Neurodegeneration, 2017, 6, 34.	8.0	4

#	Article	IF	CITATIONS
127	Olfactory Dysfunction and Its Relationship With Clinical Features of Parkinson's Disease. Frontiers in Neurology, 2020, 11, 526615.	2.4	4
128	Rare variant analysis of essential tremorâ€associated genes in earlyâ€onset Parkinson's disease. Annals of Clinical and Translational Neurology, 2021, 8, 119-125.	3.7	4
129	Evaluation of common and rare variants of Alzheimer's disease-causal genes in Parkinson's disease. Parkinsonism and Related Disorders, 2022, 97, 8-14.	2.2	4
130	Genetic landscape of human mitochondrial genome using whole-genome sequencing. Human Molecular Genetics, 2022, 31, 1747-1761.	2.9	4
131	Profiling the Genome-Wide Landscape of Short Tandem Repeats by Long-Read Sequencing. Frontiers in Genetics, 2022, 13, .	2.3	4
132	Identification of CHCHD10 variants in Chinese patients with Parkinson's disease. Parkinsonism and Related Disorders, 2018, 47, 96-97.	2.2	3
133	Generation of an induced pluripotent stem cell line (GIBHi004-A) from a Parkinson's disease patient with mutant DJ-1/PARK7 (p.L10P). Stem Cell Research, 2020, 46, 101845.	0.7	3
134	Assessment of the association between NUS1 variants and essential tremor. Neuroscience Letters, 2021, 740, 135441.	2.1	3
135	Evaluation of Peripheral Immune Activation in Amyotrophic Lateral Sclerosis. Frontiers in Neurology, 2021, 12, 628710.	2.4	3
136	Genetic Impact on Clinical Features in Parkinson's Disease: A Study on SNCA-rs11931074. Parkinson's Disease, 2018, 2018, 1-4.	1.1	2
137	Contribution of coding/non-coding variants in NUS1 to late-onset sporadic Parkinson's disease. Parkinsonism and Related Disorders, 2021, 84, 29-34.	2.2	2
138	Low-frequency and rare coding variants of NUS1 contribute to susceptibility and phenotype of Parkinson's disease. Neurobiology of Aging, 2022, 110, 106-112.	3.1	2
139	Association Study of TAF1 Variants in Parkinson's Disease. Frontiers in Neuroscience, 2022, 16, 846095.	2.8	2
140	The association between LIN28A gene rare variants and Parkinson's disease in Chinese population. Gene, 2022, 829, 146515.	2.2	2
141	Genetic Analysis of HSP40/DNAJ Family Genes in Parkinson's Disease: a Large Case-Control Study. Molecular Neurobiology, 2022, 59, 5443-5451.	4.0	2
142	Influence of cognitive function on cerebrovascular disease among the elderly. Acta Neurologica Scandinavica, 2017, 135, 308-315.	2.1	1
143	Gene4MND: An Integrative Genetic Database and Analytic Platform for Motor Neuron Disease. Frontiers in Molecular Neuroscience, 2021, 14, 644202.	2.9	1
144	Association study between SMPD1 p.L302P and sporadic Parkinson's disease in ethnic Chinese population. International Journal of Clinical and Experimental Medicine, 2015, 8, 13869-73.	1.3	1

#	Article	IF	CITATIONS
145	One PMP22/MPZ and Three MFN2/GDAP1 Concomitant Variants Occurred in a Cohort of 189 Chinese Charcot-Marie-Tooth Families. Frontiers in Neurology, 2021, 12, 736704.	2.4	1
146	L10P mutation in DJ-1 gene induced oxidative stress and mitochondrial disfunction. Journal of Central South University (Medical Sciences), 2015, 40, 1285-91.	0.1	1
147	Excimer laser atherectomy combined with drug-coated balloon angioplasty for the treatment of femoropopliteal arteriosclerosis obliterans. Annals of the Royal College of Surgeons of England, 2022, 104, 667-672.	0.6	1
148	Reply: Assessing the <i>NOTCH2NLC</i> GGC expansion in European patients with essential tremor. Brain, 2020, 143, e90-e90.	7.6	0
149	Reply: Assessing the NOTCH2NLC GGC expansion in essential tremor patients from eastern China. Brain, 2021, 144, e2-e2.	7.6	Ο
150	PSEN1 G417S mutation in a Chinese pedigree causing early-onset parkinsonism with cognitive impairment. Neurobiology of Aging, 2022, 115, 70-76.	3.1	0
151	Genetic analysis of P387L mutation in SLC18A2 gene in sporadic Parkinson's disease in Chinese Han population. Journal of Central South University (Medical Sciences), 2015, 40, 825-8.	0.1	0