List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4147288/publications.pdf Version: 2024-02-01

ELHAM H EINL

#	Article	IF	CITATIONS
1	Chemical Characterization of Biobinder from Swine Manure: Sustainable Modifier for Asphalt Binder. Journal of Materials in Civil Engineering, 2011, 23, 1506-1513.	1.3	274
2	Evaluation of Low-Temperature Binder Properties of Warm-Mix Asphalt, Extracted and Recovered RAP and RAS, and Bioasphalt. Journal of Materials in Civil Engineering, 2011, 23, 1569-1574.	1.3	142
3	Partial replacement of asphalt binder with bio-binder: characterisation and modification. International Journal of Pavement Engineering, 2012, 13, 515-522.	2.2	135
4	Aging Influence on Rheology Properties of Petroleum-Based Asphalt Modified with Biobinder. Journal of Materials in Civil Engineering, 2014, 26, 358-366.	1.3	126
5	The influence of asphaltene-resin molecular interactions on the colloidal stability of crude oil. Fuel, 2016, 183, 262-271.	3.4	120
6	Multiscale Investigation of Oxidative Aging in Biomodified Asphalt Binder. Journal of Physical Chemistry C, 2016, 120, 17224-17233.	1.5	116
7	Absorption spectroscopy to determine the extent and mechanisms of aging in bitumen and asphaltenes. Fuel, 2019, 242, 408-415.	3.4	98
8	Effects of water exposure on bitumen surface microstructure. Construction and Building Materials, 2017, 135, 682-688.	3.2	94
9	Selective adsorption of bio-oils' molecules onto rubber surface and its effects on stability of rubberized asphalt. Journal of Cleaner Production, 2020, 252, 119856.	4.6	90
10	Surface functionalization of rubber particles to reduce phase separation in rubberized asphalt for sustainable construction. Journal of Cleaner Production, 2019, 225, 82-89.	4.6	84
11	Molecular asphaltene models based on Clar sextet theory. RSC Advances, 2015, 5, 753-759.	1.7	82
12	AFM study of asphalt binder "bee―structures: origin, mechanical fracture, topological evolution, and experimental artifacts. RSC Advances, 2015, 5, 96972-96982.	1.7	80
13	Characterization of oxidized asphaltenes and the restorative effect of a bio-modifier. Fuel, 2018, 212, 593-604.	3.4	73
14	Surface functionalization of silica nanoparticles to enhance aging resistance of asphalt binder. Construction and Building Materials, 2019, 211, 1065-1072.	3.2	72
15	Evaluation of low temperature viscoelastic properties and fracture behavior of bio-asphalt mixtures. International Journal of Pavement Engineering, 2018, 19, 362-369.	2.2	70
16	Physiochemical, Rheological, and Oxidative Aging Characteristics of Asphalt Binder in the Presence of Mesoporous Silica Nanoparticles. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	69
17	Evaluation of the effect of bio-oil on the high-temperature performance of rubber modified asphalt. Construction and Building Materials, 2018, 191, 692-701.	3.2	69
18	Transesterification of Waste Cooking Oil to Produce A Sustainable Rejuvenator for Aged Asphalt. Resources, Conservation and Recycling, 2021, 168, 105297.	5.3	66

#	Article	IF	CITATIONS
19	Comparing Effects of Biobinder with Other Asphalt Modifiers on Low-Temperature Characteristics of Asphalt. Journal of Materials in Civil Engineering, 2014, 26, 429-439.	1.3	65
20	State of the art in recycling waste thermoplastics and thermosets and their applications in construction. Resources, Conservation and Recycling, 2021, 174, 105776.	5.3	65
21	Differential effects of ultraviolet radiation and oxidative aging on bio-modified binders. Fuel, 2019, 251, 45-56.	3.4	63
22	Synthesis and Characterization of Biomodified Rubber Asphalt: Sustainable Waste Management Solution for Scrap Tire and Swine Manure. Journal of Environmental Engineering, ASCE, 2013, 139, 1454-1461.	0.7	62
23	Low-Temperature Performance Characterization of Biomodified Asphalt Mixtures that Contain Reclaimed Asphalt Pavement. Transportation Research Record, 2013, 2371, 49-57.	1.0	62
24	Investigating molecular interactions and surface morphology of wax-doped asphaltenes. Physical Chemistry Chemical Physics, 2016, 18, 8840-8854.	1.3	62
25	Physiochemical characterization of synthetic bio-oils produced from bio-mass: a sustainable source for construction bio-adhesives. RSC Advances, 2015, 5, 75519-75527.	1.7	58
26	Deagglomeration of oxidized asphaltenes as a measure of true rejuvenation for severely aged asphalt binder. Construction and Building Materials, 2019, 209, 416-424.	3.2	58
27	Application of a bio-binder as a rejuvenator for wet processed asphalt shingles in pavement construction. Construction and Building Materials, 2015, 86, 75-84.	3.2	57
28	Exploiting Synergistic Effects of Intermolecular Interactions To Synthesize Hybrid Rejuvenators To Revitalize Aged Asphalt. ACS Sustainable Chemistry and Engineering, 2019, 7, 15514-15525.	3.2	57
29	Comparing effects of physisorption and chemisorption of bio-oil onto rubber particles in asphalt. Journal of Cleaner Production, 2020, 273, 123112.	4.6	57
30	Source dependency of rheological and surface characteristics of bio-modified asphalts. Road Materials and Pavement Design, 2017, 18, 408-424.	2.0	56
31	Role of Chemical Composition of Recycling Agents in Their Interactions with Oxidized Asphaltene Molecules. Journal of Materials in Civil Engineering, 2020, 32, .	1.3	56
32	Evolution of molecular packing and rheology in asphalt binder during rejuvenation. Fuel, 2018, 222, 457-464.	3.4	55
33	Alteration of π-Electron Distribution To Induce Deagglomeration in Oxidized Polar Aromatics and Asphaltenes in an Aged Asphalt Binder. ACS Sustainable Chemistry and Engineering, 2018, 6, 6554-6569.	3.2	54
34	Active Mineral Fillers Arrest Migrations of Alkane Acids to the Interface of Bitumen and Siliceous Surfaces. ACS Sustainable Chemistry and Engineering, 2019, 7, 10340-10348.	3.2	53
35	Reaction pathways for surface activated rubber particles. Resources, Conservation and Recycling, 2019, 149, 292-300.	5.3	52
36	Silanization Mechanism of Silica Nanoparticles in Bitumen Using 3-Aminopropyl Triethoxysilane (APTES) and 3-Glycidyloxypropyl Trimethoxysilane (GPTMS). ACS Sustainable Chemistry and Engineering, 2020, 8, 3231-3240.	3.2	51

#	Article	IF	CITATIONS
37	Evolution of Morphological and Nanomechanical Properties of Bitumen Thin Films as a Result of Compositional Changes Due to Ultraviolet Radiation. ACS Sustainable Chemistry and Engineering, 2019, 7, 18005-18014.	3.2	50
38	Surface Morphology and Chemical Mapping of UV-Aged Thin Films of Bitumen. ACS Sustainable Chemistry and Engineering, 2020, 8, 11764-11771.	3.2	50
39	Investigating bio-rejuvenation mechanisms in asphalt binder via laboratory experiments and molecular dynamics simulation. Construction and Building Materials, 2018, 190, 392-402.	3.2	49
40	Do all rejuvenators improve asphalt performance?. Road Materials and Pavement Design, 2022, 23, 358-376.	2.0	49
41	Investigating molecular-level factors that affect the durability of restored aged asphalt binder. Journal of Cleaner Production, 2020, 270, 122501.	4.6	46
42	Behaviors of asphalt under certain aging levels and effects of rejuvenation. Construction and Building Materials, 2020, 249, 118748.	3.2	46
43	Intermolecular Interactions of Isolated Bio-Oil Compounds and Their Effect on Bitumen Interfaces. ACS Sustainable Chemistry and Engineering, 2017, 5, 7920-7931.	3.2	44
44	Comparative life cycle assessment (LCA) of bio-modified binder and conventional asphalt binder. Clean Technologies and Environmental Policy, 2018, 20, 191-200.	2.1	44
45	Preventing Assembly and Crystallization of Alkane Acids at the Silica–Bitumen Interface To Enhance Interfacial Resistance to Moisture Damage. Industrial & Engineering Chemistry Research, 2019, 58, 21542-21552.	1.8	43
46	The impact of project-based learning on improving student learning outcomes of sustainability concepts in transportation engineering courses. European Journal of Engineering Education, 2018, 43, 473-488.	1.5	42
47	Investigating bitumen rejuvenation mechanisms using a coupled rheometry-morphology characterization approach. Construction and Building Materials, 2018, 159, 37-45.	3.2	41
48	Investigation of Balanced Feedstocks of Lipids and Proteins To Synthesize Highly Effective Rejuvenators for Oxidized Asphalt. ACS Sustainable Chemistry and Engineering, 2020, 8, 7656-7667.	3.2	41
49	Application of surface-modified silica nanoparticles with dual silane coupling agents in bitumen for performance enhancement. Construction and Building Materials, 2020, 244, 118324.	3.2	40
50	Improving recycled asphalt using sustainable hybrid rejuvenators with enhanced intercalation into oxidized asphaltenes nanoaggregates. Construction and Building Materials, 2020, 262, 120090.	3.2	39
51	Investigating Change of Polydispersity and Rheology of Crude Oil and Bitumen Due to Asphaltene Oxidation. Energy & Fuels, 2020, 34, 10299-10305.	2.5	39
52	Moisture Damage and Its Relation to Surface Adsorption/Desorption of Rejuvenators. Industrial & Engineering Chemistry Research, 2020, 59, 13414-13419.	1.8	39
53	Review on Aging of Bio-Oil from Biomass Pyrolysis and Strategy to Slowing Aging. Energy & Fuels, 2021, 35, 11665-11692.	2.5	39
54	Performance characteristics of high reclaimed asphalt pavement containing bio-modifier. Road Materials and Pavement Design, 2016, 17, 753-767.	2.0	38

#	Article	IF	CITATIONS
55	Use of microbially desulfurized rubber to produce sustainable rubberized bitumen. Resources, Conservation and Recycling, 2021, 164, 105144.	5.3	37
56	Bio-modified rubberized asphalt binder: A clean, sustainable approach to recycle rubber into construction. Journal of Cleaner Production, 2022, 345, 131151.	4.6	37
57	Alteration of intermolecular interactions between units of asphaltene dimers exposed to an amide-enriched modifier. RSC Advances, 2016, 6, 53477-53492.	1.7	36
58	Investigating molecular conformation and packing of oxidized asphaltene molecules in presence of paraffin wax. Fuel, 2018, 220, 503-512.	3.4	36
59	Durability of rubberized asphalt binders containing waste cooking oil under thermal and ultraviolet aging. Construction and Building Materials, 2021, 299, 124282.	3.2	36
60	Multi-scale characterization of the effect of wax on intermolecular interactions in asphalt binder. Construction and Building Materials, 2017, 157, 1163-1172.	3.2	35
61	Fractional Viscoelastic Study of Low-Temperature Characteristics of Biomodified Asphalt Binders. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	32
62	Multiscale Evaluation of Moisture Susceptibility of Biomodified Bitumen. ACS Applied Bio Materials, 2019, 2, 5779-5789.	2.3	32
63	Reducing susceptibility to moisture damage in asphalt pavements using polyethylene terephthalate and sodium montmorillonite clay. Construction and Building Materials, 2021, 269, 121302.	3.2	32
64	Fused Aromatics To Restore Molecular Packing of Aged Bituminous Materials. Industrial & Engineering Chemistry Research, 2019, 58, 11939-11953.	1.8	31
65	Examining the Implications of Wax-Based Additives on the Sustainability of Construction Practices: Multiscale Characterization of Wax-Doped Aged Asphalt Binder. ACS Sustainable Chemistry and Engineering, 2019, 7, 2943-2954.	3.2	31
66	Bio-modification of rubberised asphalt binder to enhance its performance. International Journal of Pavement Engineering, 2019, 20, 1216-1225.	2.2	31
67	Development of a Pressurized Blister Test for Interface Characterization of Aggregate Highly Polymerized Bituminous Materials. Journal of Materials in Civil Engineering, 2011, 23, 656-663.	1.3	30
68	Compositional mapping of bitumen using local electrostatic force interactions in atomic force microscopy. Journal of Microscopy, 2017, 265, 196-206.	0.8	29
69	Resistance Mechanisms of Biomodified Binders against Ultraviolet Exposure. ACS Sustainable Chemistry and Engineering, 2020, 8, 2390-2398.	3.2	27
70	Relationship between colloidal index and chemo-rheological properties of asphalt binders modified by various recycling agents. Construction and Building Materials, 2022, 318, 126161.	3.2	27
71	Unraveling the modification mechanisms of waste bio-oils and crumb rubber on asphalt binder based on microscopy and chemo-rheology. Resources, Conservation and Recycling, 2022, 185, 106447.	5.3	27
72	Combination of alkalinity and porosity enhances formaldehyde adsorption on pig manure -derived composite adsorbents. Microporous and Mesoporous Materials, 2019, 286, 155-162.	2.2	26

#	Article	IF	CITATIONS
73	Interplay between wax and polyphosphoric acid and its effect on bitumen thermomechanical properties. Construction and Building Materials, 2020, 243, 118194.	3.2	26
74	Enhancing Biomass Value Chain by Utilizing Biochar as A Free Radical Scavenger to Delay Ultraviolet Aging of Bituminous Composites Used in Outdoor Construction. Resources, Conservation and Recycling, 2021, 168, 105302.	5.3	25
75	Investigating aging properties of bitumen modified with polyethylene-terephthalate waste plastic. Resources, Conservation and Recycling, 2021, 173, 105687.	5.3	25
76	Effects of ultraviolet exposure on physicochemical and mechanical properties of bio-modified rubberized bitumen: Sustainability promotion and resource conservation. Resources, Conservation and Recycling, 2021, 171, 105626.	5.3	24
77	Application of a Biomodifier as Fog Sealants to Delay Ultraviolet Aging of Bituminous Materials. Journal of Materials in Civil Engineering, 2018, 30, .	1.3	23
78	Durability of bio-modified recycled asphalt shingles exposed to oxidation aging and extended sub-zero conditioning. Construction and Building Materials, 2019, 208, 543-553.	3.2	23
79	Balancing the Aromatic and Ketone Content of Bio-oils as Rejuvenators to Enhance Their Efficacy in Restoring Properties of Aged Bitumen. ACS Sustainable Chemistry and Engineering, 2021, 9, 6912-6922.	3.2	23
80	Sustainable construction via novel geopolymer composites incorporating waste plastic of different sizes and shapes. Construction and Building Materials, 2022, 324, 126697.	3.2	23
81	Multiscale Investigation of a Bioresidue as a Novel Intercalant for Sodium Montmorillonite. Journal of Physical Chemistry C, 2017, 121, 1794-1802.	1.5	22
82	The effect of progressive aging on the bond strength of bitumen to siliceous stones. Applied Surface Science, 2021, 550, 149324.	3.1	22
83	State of the art in the application of functionalized waste polymers in the built environment. Resources, Conservation and Recycling, 2022, 177, 105967.	5.3	22
84	Underlying Molecular Interactions between Sodium Montmorillonite Clay and Acidic Bitumen. Journal of Physical Chemistry C, 2019, 123, 15513-15522.	1.5	21
85	Non-Covalent π-Stacking Interactions between Asphaltene and Porphyrin in Bitumen. Journal of Chemical Information and Modeling, 2020, 60, 4856-4866.	2.5	21
86	Production of functionalized carbon from synergistic hydrothermal liquefaction of microalgae and swine manure. Resources, Conservation and Recycling, 2021, 170, 105564.	5.3	21
87	Biomodification of Rubberized Asphalt and Its High Temperature Properties. Transportation Research Record, 2015, 2506, 81-89.	1.0	20
88	Investigating the effectiveness of liquid rubber as a modifier for asphalt binder. Road Materials and Pavement Design, 2016, 17, 825-840.	2.0	20
89	Effect of introduction of furfural on asphalt binder ageing characteristics. Road Materials and Pavement Design, 2016, 17, 638-657.	2.0	19
90	Introducing a stress-dependent fractional nonlinear viscoelastic model for modified asphalt binders. Construction and Building Materials, 2018, 183, 102-113.	3.2	19

#	Article	IF	CITATIONS
91	Low-Temperature Performance of Toner-Modified Asphalt Binder. Journal of Transportation Engineering Part B: Pavements, 2019, 145, 04019022.	0.8	19
92	Moderating Effects of Paraffin Wax on Interactions between Polyphosphoric Acid and Bitumen Constituents. ACS Sustainable Chemistry and Engineering, 2019, 7, 19739-19749.	3.2	19
93	Inherently Functionalized Carbon from Lipid and Protein-Rich Biomass to Reduce Ultraviolet-Induced Damages in Bituminous Materials. ACS Omega, 2020, 5, 25273-25280.	1.6	19
94	Implication of wax on hindering self-healing processes in bitumen. Applied Surface Science, 2020, 523, 146449.	3.1	18
95	Functionalized Waste Plastic Granules to Enhance Sustainability of Bituminous Composites. Resources, Conservation and Recycling, 2022, 183, 106353.	5.3	17
96	Investigating Effects of Application of Silica Fume to Reduce Asphalt Oxidative Aging. American Journal of Engineering and Applied Sciences, 2015, 8, 176-184.	0.3	16
97	Investigating the Aging Susceptibility of Bio-Modified Asphalts. , 2015, , .		15
98	Multiscale Evaluation of Synergistic and Antagonistic Interactions between Bitumen Modifiers. ACS Sustainable Chemistry and Engineering, 2019, 7, 15568-15577.	3.2	15
99	Preferential adsorption of nickel porphyrin to resin to increase asphaltene precipitation. Fuel, 2019, 236, 468-479.	3.4	15
100	Increasing the efficacy of recycling agents with simultaneous addition of zinc diethyldithiocarbamate as an antioxidant. Construction and Building Materials, 2021, 271, 121892.	3.2	15
101	Introducing a Sustainable Bio-Based Polyurethane to Enhance the Healing Capacity of Bitumen. Journal of Materials in Civil Engineering, 2022, 34, .	1.3	15
102	Investigating the healing capacity of asphalt mixtures containing iron slag. Construction and Building Materials, 2020, 261, 119446.	3.2	14
103	Biomass Waste to Produce Phenolic Compounds as Antiaging Additives for Asphalt. ACS Sustainable Chemistry and Engineering, 2022, 10, 3892-3908.	3.2	14
104	Using Fundamental Material Properties to Predict the Moisture Susceptibility of the Asphalt Binder: Polarizability and a Moisture-Induced Shear-Thinning Index. ACS Applied Bio Materials, 2020, 3, 7399-7407.	2.3	13
105	Developing carbon nanoparticles with tunable morphology and surface chemistry for use in construction. Construction and Building Materials, 2020, 262, 120780.	3.2	13
106	Interaction mechanisms of polyphosphoric acid and nano clay in bituminous composites. Journal of Colloid and Interface Science, 2021, 588, 446-455.	5.0	13
107	Inherently Functionalized Carbon from Algae to Adsorb Precursors of Secondary Organic Aerosols in Noncombustion Sources. ACS Sustainable Chemistry and Engineering, 2021, 9, 14375-14384.	3.2	13
108	Investigating Bio-Char as Flow Modifier and Water Treatment Agent for Sustainable Pavement Design. American Journal of Engineering and Applied Sciences, 2015, 8, 138-146.	0.3	12

#	Article	IF	CITATIONS
109	A bottom-up approach to study the moisture susceptibility of bio-modified asphalt. Construction and Building Materials, 2020, 265, 120289.	3.2	12
110	A Novel Bioresidue to Compatibilize Sodium Montmorillonite and Linear Low Density Polyethylene. Industrial & Engineering Chemistry Research, 2018, 57, 1213-1224.	1.8	11
111	Phenolic compounds to amplify the effect of sulfur on Bitumen's thermomechanical properties. Fuel, 2021, 287, 119532.	3.4	11
112	Surface functionalization of silica nanoparticles with swine manure-derived bio-binder to enhance bitumen performance in road pavement. Construction and Building Materials, 2021, 266, 121000.	3.2	11
113	Introducing the critical aging point (CAP) of asphalt based on its restoration capacity. Construction and Building Materials, 2021, 278, 122379.	3.2	11
114	End of life plastics to enhance sustainability of pavement construction utilizing a hybrid treatment of bio-oil and carbon coating. Construction and Building Materials, 2021, 278, 122444.	3.2	11
115	Multifunctional zeolite nanorods as wax carriers and acid scavengers in asphalt binder. Construction and Building Materials, 2020, 264, 120249.	3.2	10
116	Investigating Effects of Water Conditioning on the Adhesion Properties of Crack Sealant. American Journal of Engineering and Applied Sciences, 2016, 9, 178-186.	0.3	9
117	Polyphosphoric Acid's synergy with bio-modified bituminous composites. Resources, Conservation and Recycling, 2021, 168, 105310.	5.3	9
118	Effects of Amide-Based modifiers on surface activation and devulcanization of rubber. Computational Materials Science, 2021, 188, 110175.	1.4	9
119	Understanding How Polyphosphoric Acid Changes Bitumen's Response to Water Exposure. ACS Sustainable Chemistry and Engineering, 2021, 9, 1313-1322.	3.2	9
120	Effect of Sulfur on Bio-Modified Rubberized Bitumen. Construction and Building Materials, 2021, 273, 122034.	3.2	9
121	Effect of polyphosphoric acid on fracture properties of asphalt binder and asphalt mixtures. Construction and Building Materials, 2021, 310, 125240.	3.2	9
122	Toward Carbon-Negative and Emission-Curbing Roads to Drive Environmental Health. ACS Sustainable Chemistry and Engineering, 2022, 10, 1857-1862.	3.2	9
123	Investigating Aging and Rejuvenation Mechanism of Biomodified Rubberized Bitumen. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	8
124	Turning two waste streams into one solution for enhancing sustainability of the built environment. Resources, Conservation and Recycling, 2021, 174, 105778.	5.3	8
125	Effects of Elemental Sulfur on the Aging Trajectory and Adhesion Characteristics of Rubber-Modified Bitumen. ACS Sustainable Chemistry and Engineering, 2021, 9, 16918-16925.	3.2	8
126	Preventing emissions of hazardous organic compounds from bituminous composites. Journal of Cleaner Production, 2022, 344, 131067.	4.6	8

#	Article	IF	CITATIONS
127	Empirical Analysis of Effect of Project-Based Learning on Student Learning in Transportation Engineering. Transportation Research Record, 2012, 2285, 167-172.	1.0	7
128	Effects of Wax-Impregnated Nanozeolites on Bitumen's Thermomechanical Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 15299-15309.	3.2	7
129	Effect of Disruptions on Service Quality and Market Share. Transportation Research Record, 2011, 2214, 34-40.	1.0	6
130	Characterizing mechanical response of bio-modified bitumen at sub zero temperatures. Construction and Building Materials, 2020, 240, 117940.	3.2	6
131	Robust cleaning mechanism permanently detaches hydrocarbon species from silicate surfaces by amphiphiles. Applied Surface Science, 2021, 558, 149954.	3.1	6
132	A comparative study on efficacy of waste plastic and waste Rubber in bitumen. Construction and Building Materials, 2022, 325, 126724.	3.2	6
133	Investigating the effect of productivity, quality, and safety on profitability in the US airline industry. International Journal of Logistics Systems and Management, 2011, 10, 70.	0.2	5
134	Efficient Air Desulfurization Catalysts Derived from Pig Manure Liquefaction Char. Journal of Carbon Research, 2017, 3, 37.	1.4	5
135	Intermolecular interactions of bio-modified halloysite nanotube within high-impact polystyrene and linear low-density polyethylene. Applied Surface Science, 2019, 473, 750-760.	3.1	5
136	A heterogeneous micromechanical model for bituminous composites containing rigid and flexible particulates. Construction and Building Materials, 2021, 275, 122102.	3.2	5
137	Interactions of SARS-CoV-2 with inanimate surfaces in built and transportation environments. Sustainable Cities and Society, 2021, 72, 103031.	5.1	5
138	Multiscale Characterization of a Wood-Based Biocrude as a Green Compatibilizing Agent for High-Impact Polystyrene/Halloysite Nanotube Nanocomposites. ACS Omega, 2019, 4, 19934-19943.	1.6	4
139	Protein enriched biowaste: A viable feedstock to make durable bio-binders for bituminous composites. Resources, Conservation and Recycling, 2021, 170, 105576.	5.3	4
140	Sustainability Implications of Regenerative Sulfur Blooms in Bituminous Composites. ACS Sustainable Chemistry and Engineering, 2021, 9, 9486-9493.	3.2	4
141	A multifunctional bio-agent for extraction of aged bitumen from siliceous surfaces. Journal of Industrial and Engineering Chemistry, 2021, , .	2.9	4
142	Introduction of Polymer Nanocomposites to Bitumen to Enhance its Thermomechanical Properties. Journal of Transportation Engineering Part B: Pavements, 2021, 147, .	0.8	4
143	Enhancing the Economics and Environmental Sustainability of the Manufacturing Process for Air-Blown bitumen. Journal of Cleaner Production, 2021, 323, 128978.	4.6	4
144	High-sulfur bitumen amplifies the effect of polyphosphoric acid. Fuel, 2022, 314, 123128.	3.4	4

#	Article	IF	CITATIONS
145	Evaluation of the compatibility of waste plastics and bitumen using micromechanical modeling. Construction and Building Materials, 2022, 317, 126107.	3.2	4
146	Phenolic Compounds to Hinder Sulfur Crystallization in Sulfur-Extended Bitumen. Resources, Conservation and Recycling, 2022, 180, 106184.	5.3	4
147	Effects of sulfur phase transition on moisture-induced damages in bitumen colloidal structure. Journal of Industrial and Engineering Chemistry, 2022, 107, 109-117.	2.9	4
148	Introducing a New Test to Examine Moisture Susceptibility at the Interface of Bitumen and Stones. Journal of Transportation Engineering Part B: Pavements, 2022, 148, .	0.8	4
149	Effect of swine-waste bio-char on the water absorption characteristics of cement pastes. International Journal of Building Pathology and Adaptation, 2018, 36, 283-299.	0.7	3
150	Toward sustainability in the built environment: An integrative approach. Resources, Conservation and Recycling, 2021, 172, 105676.	5.3	3
151	Effect of Taconite on Healing and Thermal Characteristics of Asphalt Binder. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	3
152	Effect of Pavement Type on Overlay Roughness Progression. Journal of Transportation Engineering, 2012, 138, 1558-1562.	0.9	2
153	Weathering Mechanisms in Bitumen Modified with Polyphosphoric Acid. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	2
154	Biochar effects on the performance of conventional and rubberized HMA. Road Materials and Pavement Design, 0, , 1-17.	2.0	2
155	Phenolic Compounds in the Built Environment. Biochemistry, 0, , .	0.8	1
156	Towards more durable recycled bituminous composites. Construction and Building Materials, 2022, 318, 126177.	3.2	1
157	Investigating the effect of ultraviolet aging on the healing capacity of bitumen containing taconite tailings. Road Materials and Pavement Design, 0, , 1-12.	2.0	1