Chunchun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4147083/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nature Materials, 2018, 17, 349-354.	27.5	874
2	Relaxor Ferroelectric BaTiO ₃ –Bi(Mg _{2/3} Nb _{1/3})O ₃ Ceramics for Energy Storage Application. Journal of the American Ceramic Society, 2015, 98, 559-566.	3.8	439
3	Dielectric relaxation and Maxwell-Wagner interface polarization in Nb2O5 doped 0.65BiFeO3–0.35BaTiO3 ceramics. Journal of Applied Physics, 2017, 121, .	2.5	175
4	Li2AGeO4 (A = Zn, Mg): Two novel low-permittivity microwave dielectric ceramics with olivine structure. Journal of the European Ceramic Society, 2018, 38, 1524-1528.	5.7	124
5	Ultralow Loss CaMgGeO ₄ Microwave Dielectric Ceramic and Its Chemical Compatibility with Silver Electrodes for Low-Temperature Cofired Ceramic Applications. ACS Sustainable Chemistry and Engineering, 2018, 6, 6458-6466.	6.7	109
6	A low-firing melilite ceramic Ba2CuGe2O7 and compositional modulation on microwave dielectric properties through Mg substitution. Journal of Advanced Ceramics, 2021, 10, 108-119.	17.4	89
7	A novel low-firing microwave dielectric ceramic Li 2 ZnGe 3 O 8 with cubic spinel structure. Journal of the European Ceramic Society, 2017, 37, 625-629.	5.7	88
8	Evolution of the structure, dielectric and ferroelectric properties of Na0.5Bi0.5TiO3-added BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics. Ceramics International, 2020, 46, 25392-25398.	4.8	74
9	Atomic-scale origin of ultrahigh piezoelectricity in samarium-doped PMN-PT ceramics. Physical Review B, 2020, 101, .	3.2	69
10	Two novel ultralow temperature firing microwave dielectric ceramics LiMVO6 (M = Mo, W) and their chemical compatibility with metal electrodes. Journal of the European Ceramic Society, 2017, 37, 3959-3963.	5.7	64
11	NaCa4V5O17: A low-firing microwave dielectric ceramic with low permittivity and chemical compatibility with silver for LTCC applications. Journal of the European Ceramic Society, 2020, 40, 386-390.	5.7	64
12	A-site compositional modulation in barium titanate based relaxor ceramics to achieve simultaneously high energy density and efficiency. Journal of the European Ceramic Society, 2021, 41, 6474-6481.	5.7	60
13	Li 4 WO 5 : A temperature stable low-firing microwave dielectric ceramic with rock salt structure. Journal of the European Ceramic Society, 2016, 36, 243-246.	5.7	58
14	Crystal structure and dielectric properties of germanate melilites Ba2MGe2O7 (M = Mg and Zn) with low permittivity. Journal of the European Ceramic Society, 2018, 38, 5246-5251.	5.7	54
15	Microwave dielectric properties and infrared reflectivity spectra analysis of two novel low-firing AgCa2B2V3O12 (Bâ€= Mg, Zn) ceramics with garnet structure. Journal of the European Ceramic Society, 2018, 38, 4670-4676.	5.7	53
16	Structure, microwave dielectric properties, and infrared reflectivity spectrum of olivine type Ca2GeO4 ceramic. Journal of the European Ceramic Society, 2019, 39, 2354-2359.	5.7	53
17	Effects of Sr2+ substitution on the crystal structure, Raman spectra, bond valence and microwave dielectric properties of Ba3-xSrx(VO4)2 solid solutions. Journal of the European Ceramic Society, 2019, 39, 3738-3743.	5.7	52
18	Influence of filler characteristics on the performance of dental composites: A comprehensive review. Ceramics International, 2022, 48, 27280-27294.	4.8	49

#	Article	IF	CITATIONS
19	Enhancement of the cation order and the microwave dielectric properties of Li2ZnTi3O8 through composition modulation. Journal of the European Ceramic Society, 2019, 39, 3064-3069.	5.7	44
20	Structural, infrared reflectivity spectra and microwave dielectric properties of the Li7Ti3O9F ceramic. Ceramics International, 2019, 45, 10163-10169.	4.8	44
21	Factors affecting the piezoelectric performance of ceramic-polymer composites: A comprehensive review. Ceramics International, 2021, 47, 17813-17825.	4.8	42
22	Compositional modulation in ZnGa2O4 via Zn2+/Ge4+ co-doping to simultaneously lower sintering temperature and improve microwave dielectric properties. Journal of Advanced Ceramics, 2021, 10, 1360-1370.	17.4	42
23	Lowâ€firing and temperature stable microwave dielectric ceramics: Ba ₂ LnV ₃ O ₁₁ (LnÂ=ÂNd, Sm). Journal of the American Ceramic Society, 2018, 101, 773-781.	3.8	36
24	Low-firing and microwave dielectric properties of Na 2 YMg 2 V 3 O 12 ceramic. Ceramics International, 2016, 42, 3701-3705.	4.8	35
25	Ba ₄ LiNb _{3â``<i>x</i>} Ta _{<i>x</i>} O ₁₂ (<i>x</i> =0â€``3): A Series of Highâ€Q Microwave Dielectrics from the Twinned 8H Hexagonal Perovskites. Journal of the American Ceramic Society, 2010, 93, 1229-1231.	3.8	34
26	Ultralow-Temperature Synthesis and Densification of Ag ₂ CaV ₄ O ₁₂ with Improved Microwave Dielectric Performances. ACS Sustainable Chemistry and Engineering, 2021, 9, 14461-14469.	6.7	34
27	A Novel Temperature Stable Microwave Dielectric Ceramic with Garnet Structure: Sr ₂ NaMg ₂ V ₃ O ₁₂ . Journal of the American Ceramic Society, 2016, 99, 399-401.	3.8	32
28	Microwave dielectric properties of temperature stable Li2ZnxCo1â^'xTi3O8 ceramics. Journal of Alloys and Compounds, 2011, 509, 8840-8844.	5.5	31
29	Lowâ€ŧemperature sintering and thermal stability of Li ₂ GeO ₃ â€based microwave dielectric ceramics with low permittivity. Journal of the American Ceramic Society, 2018, 101, 4608-4614.	3.8	31
30	Two novel low-firing germanates Li 2 MGe 3 O 8 (M = Ni, Co) microwave dielectric ceramics with spinel structure. Ceramics International, 2017, 43, 1622-1627.	4.8	30
31	Effects of BaCu(B ₂ O ₅) Addition on Phase Transition, Sintering Temperature, and Microwave Properties of Ba ₄ LiNb ₃ O ₁₂ Ceramics. Journal of the American Ceramic Society, 2011, 94, 524-528.	3.8	28
32	Structure and Microwave dielectric properties of a novel temperature stable low-firing Ba 2 LaV 3 O 11 ceramic. Journal of the European Ceramic Society, 2016, 36, 2143-2148.	5.7	28
33	LiYGeO4: Novel low-permittivity microwave dielectric ceramics with intrinsic low sintering temperature. Materials Letters, 2018, 228, 96-99.	2.6	28
34	BaTa2V2O11: A novel low fired microwave dielectric ceramic. Journal of the European Ceramic Society, 2015, 35, 3765-3770.	5.7	27
35	Microwave dielectric properties of novel glass-free low temperature firing ACa 2 Mg 2 V 3 O 12 (A=Li,) Tj ETQq1	1 0,78431 4.8	4 rgBT /Ove

³⁶ A reduced sintering temperature and improvement in the microwave dielectric properties of Li2Mg3TiO6 through Ge substitution. Ceramics International, 2018, 44, 5817-5821.

4.8 27

#	Article	IF	CITATIONS
37	SrV2O6: An ultralow-firing microwave dielectric ceramic for LTCC applications. Materials Research Bulletin, 2018, 100, 377-381.	5.2	26
38	Two novel low permittivity microwave dielectric ceramics Li2TiMO5 (M = Ge, Si) with abnormally positive Ï". Journal of the European Ceramic Society, 2019, 39, 2680-2684.	5.7	26
39	Low temperature firing and microwave dielectric properties of BaCaV2O7 ceramics. Ceramics International, 2015, 41, 5172-5176.	4.8	24
40	Microwave Dielectric Properties of a Lowâ€Firing Ba ₂ BiV ₃ O ₁₁ Ceramic. Journal of the American Ceramic Society, 2015, 98, 683-686.	3.8	24
41	Ultra-Low Loss Microwave Dielectric Ceramic Li2Mg2TiO5 and Low-Temperature Firing Via B2O3 Addition. Journal of Electronic Materials, 2018, 47, 6383-6389.	2.2	22
42	Crystal structure, Raman spectroscopy and microwave dielectric properties of Li1+xZnNbO4 (0†â‰≇€ x†â‰≇€ 0.05) ceramics. Journal of Alloys and Compounds, 2019, 777, 1-7.	5.5	22
43	Microwave dielectric properties of La3Ti2TaO11 ceramics with perovskite-like layered structure. Journal of the European Ceramic Society, 2012, 32, 4015-4020.	5.7	21
44	Ultralow temperature cofired BiZn ₂ <scp>VO</scp> ₆ dielectric ceramics doped with B ₂ O ₃ and Li ₂ <scp>CO</scp> ₃ for <scp>ULTCC</scp> applications. Journal of the American Ceramic Society, 2019, 102, 1218-1226.	3.8	21
45	Phase formation and microwave dielectric properties of Bi <scp>MVO</scp> ₅ (M = Ca, Mg) ceramics potential for low temperature coâ€fired ceramics application. Journal of the American Ceramic Society, 2019, 102, 362-371.	3.8	20
46	Phase evolution, far-infrared spectra, and ultralow loss microwave dielectric ceramic of Zn2Ge1+xO4+2x (â~' 0.1 â‰₿€‰x â‰₿€‰0.2). Journal of Materials Science: Materials in Elect 16651-16658.	roniæ2201	9, 30 ,
47	Two low-permittivity melilite ceramics in the SrO-MO-GeO2 (M = Mg, Zn) system and their temperature stability through compositional modifications. Journal of the European Ceramic Society, 2020, 40, 1186-1190.	5.7	19
48	Novel low-εr and lightweight LiBO2 microwave dielectric ceramics with good chemical compatibility with silver. Journal of the European Ceramic Society, 2022, 42, 4580-4586.	5.7	19
49	A Novel Lowâ€Firing and Low Loss Microwave Dielectric Ceramic Li ₂ Mg ₂ W ₂ 9 with Corundum Structure. Journal of the American Ceramic Society, 2015, 98, 3863-3868.	3.8	18
50	Microwave dielectric properties in the Li4+Ti5O12 (0Â≤̂xÂ≤̂1.2) ceramics. Journal of Alloys and Compounds, 2017, 701, 295-300.	5.5	18
51	Structure, microwave dielectric performance, and infrared reflectivity spectrum of olivineâ€ŧype Mg 2 Ge 0.98 O 4 ceramic. Journal of the American Ceramic Society, 2020, 103, 1789-1797.	3.8	18
52	Tunable microwave dielectric properties in SrOâ€V ₂ O ₅ system through compositional modulation. Journal of the American Ceramic Society, 2020, 103, 2315-2321.	3.8	18
53	Flexible and low cost lead free composites with high dielectric constant. Ceramics International, 2017, 43, 3923-3926.	4.8	17
54	Two novel low-firing Na2AMg2V3O12(A=Nd, Sm) ceramics and their chemical compatibility with silver. Ceramics International, 2017, 43, 2892-2898.	4.8	17

#	Article	IF	CITATIONS
55	Defect engineering in rareâ€earthâ€doped BaTiO ₃ ceramics: Route to highâ€temperature stability of colossal permittivity. Journal of the American Ceramic Society, 2022, 105, 5725-5737.	3.8	17
56	The high piezoelectricity and thermal stability of high-temperature piezoelectric ceramics BiFeO ₃ –0.25BaTiO ₃ – <i>x</i> Bi _{0.5} K _{0.5} TiO ₃ near the MPB. Journal of Materials Chemistry C, 2022, 10, 8301-8309.	· 5 . 5	17
57	A low-firing Ca 5 Ni 4 (VO 4) 6 ceramic with tunable microwave dielectric properties and chemical compatibility with Ag. Ceramics International, 2016, 42, 15094-15098.	4.8	16
58	Preparation, Crystal Structure and Microwave Dielectric Properties of Rare-Earth Vanadates: ReVO4 (ReÂ=ÂNd, Sm). Journal of Electronic Materials, 2017, 46, 1956-1962.	2.2	16
59	Large flexoelectric response in PMN-PT ceramics through composition design. Applied Physics Letters, 2019, 115, .	3.3	16
60	A novel low-firing microwave dielectric ceramic NaMg4V3O12 and its chemical compatibility with silver electrode. Ceramics International, 2015, 41, 13878-13882.	4.8	15
61	Phase transition, dielectric relaxation and piezoelectric properties of bismuth doped La2Ti2O7 ceramics. Ceramics International, 2016, 42, 11453-11458.	4.8	15
62	Non-linear behavior of flexoelectricity. Applied Physics Letters, 2019, 115, .	3.3	14
63	Synthesis of LiBGeO4 using compositional design and its dielectric behaviors at RF and microwave frequencies. Ceramics International, 2020, 46, 22460-22465.	4.8	14
64	Crystal structure, phonon characteristics, and dielectric properties of CaMgGe2O6: A novel diopside microwave dielectric ceramic. Ceramics International, 2022, 48, 8783-8788.	4.8	14
65	Dielectric relaxation and electrical conductivity in Ca5Nb4TiO17 ceramics. Ceramics International, 2015, 41, 9923-9930.	4.8	13
66	A novel ultra-low temperature cofired Na2BiZn2V3O12 ceramic and its chemical compatibility with metal electrodes. Journal of Materials Science: Materials in Electronics, 2017, 28, 1508-1513.	2.2	13
67	Ba ₄ Ln ₂ Fe ₂ Ta ₈ O ₃₀ (Ln=Pr, Eu): Temperatureâ€6table Low Loss Dielectrics with a Tungsten Bronze Structure. Journal of the American Ceramic Society, 2010, 93, 945-947.	3.8	12
68	Cu3Mo2O9: An Ultralow-Firing Microwave Dielectric Ceramic with Good Temperature Stability and Chemical Compatibility with Aluminum. Journal of Electronic Materials, 2018, 47, 1003-1008.	2.2	12
69	Revisiting the structural stability and electromechanical properties in lead zinc niobate-lead titanate-barium titanate (PZN-PT-BT) ternary system. Journal of the European Ceramic Society, 2020, 40, 1236-1242.	5.7	12
70	Low-temperature sintering, dielectric performance, and far-IR reflectivity spectrum of a lightweight NaCaVO4 with good chemical compatibility with silver. Ceramics International, 2021, 47, 22219-22224.	4.8	12
71	Compositional modulation and annealing treatment in BaTiO3 to simultaneously achieve colossal permittivity, low dielectric loss, and high thermal stability. Ceramics International, 2021, 47, 33912-33916.	4.8	12
72	Influence of cation order on crystal structure and microwave dielectric properties in xLi4/3Ti5/3O4-(1-x)Mg2TiO4 (0.6 ≤ ≤0.9) spinel solid solutions. Journal of the European Ceramic Society, 2021, 41, 7683-7688.	5.7	12

#	Article	IF	CITATIONS
73	Dielectric Properties of Ba ₄ Sm ₂ Fe ₂ M ₈ O ₃₀ (M=Nb, Ta) with Tetragonal Bronze Structure. Journal of the American Ceramic Society, 2010, 93, 2430-2433.	3.8	11
74	Microwave dielectric properties of CaO–La2O3–Nb2O5–TiO2 ceramics. Journal of Materials Science: Materials in Electronics, 2013, 24, 1947-1954.	2.2	11
75	Reduced thermal conductivity by nanoscale intergrowths in perovskite like layered structure La2Ti2O7. Journal of Applied Physics, 2015, 117, .	2.5	11
76	Relaxor behavior and ferroelectric properties of a new Ba 4 SmFe 0.5 Nb 9.5 O 30 tungsten bronze ceramic. Ceramics International, 2016, 42, 14999-15004.	4.8	11
77	Structural, thermal and microwave dielectric properties of the novel microwave material Ba 2 TiGe 2 O 8. Ceramics International, 2018, 44, 10824-10828.	4.8	11
78	Local structural heterogeneity induced large flexoelectricity in Sm-doped PMN–PT ceramics. Journal of Applied Physics, 2021, 129, .	2.5	11
79	High rhombohedral to tetragonal phase transition temperature and electromechanical response in Pb(Yb1/2Nb1/2)O3-Pb(Sc1/2Nb1/2)O3-PbTiO3 ferroelectric system near the morphotropic phase boundary. Journal of the European Ceramic Society, 2019, 39, 2082-2090.	5.7	11
80	Interplay of defect dipole and flexoelectricity in linear dielectrics. Scripta Materialia, 2022, 210, 114427.	5.2	11
81	Phase composition and microwave dielectric properties of low-firing Li2A2W3O12 (AÂ=ÂMg, Zn) ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 5892-5895.	2.2	10
82	High dielectric permittivity and ultralow dielectric loss in Nb-doped SrTiO3 ceramics. Ceramics International, 2022, 48, 28438-28443.	4.8	10
83	Dielectric and ferroelectric properties of tungsten bronze ferroelectrics in SrO–Pr2O3–TiO2–Nb2O5 system. Materials Chemistry and Physics, 2010, 121, 114-117.	4.0	9
84	Complex impedance analysis on a layered perovskite-like ceramic: La3Ti2TaO11. Journal of Materials Science, 2012, 47, 4200-4204.	3.7	9
85	Low temperature sintering and microwave dielectric properties of Zn3Mo2O9 ceramic. Journal of Materials Science: Materials in Electronics, 2018, 29, 1907-1913.	2.2	9
86	(1-x)Li4WO5-xLiF: A novel oxyfluoride system and their microwave dielectric properties. Journal of Alloys and Compounds, 2020, 835, 155320.	5.5	9
87	Improvements on sintering behavior and microwave dielectric properties of Li4WO5 ceramics through MgO modification. Ceramics International, 2021, 47, 2802-2808.	4.8	9
88	Compositional design, structure stability, and microwave dielectric properties in Ca3MgBGe3O12 (B =) Tj ETQc	000 grgBT	/Oyerlock 10
89	Sr _{4â°'<i>m</i>} La <i>_m</i> Ti _{<i>m</i>â°`1} Ta _{4â°'<i>m</i>} O< (<i>m</i> =1, 2, 3): A Novel Series of A ₄ B ₃ O ₁₂ â€Type Microwave Ceramics with a High <i>Q</i> and Low Ï,, _f . Journal of the American Ceramic Society, 2010, 02.1884.1897	sub>123.8	sub> 8
00	Study on properties of tantalum-doped	2.4	0

90 La₂Ti₂O₇
ferroelectric ceramics. Journal of Advanced Dielectrics, 2015, 05, 1550005.

2.4 8

#	Article	IF	CITATIONS
91	A novel low-firing BiZn2VO6 microwave dielectric ceramic with low loss. Journal of Materials Science: Materials in Electronics, 2016, 27, 210-214.	2.2	8
92	Structure and microwave dielectric properties of Ba3Nb4-4Ti4+5O21 ceramics with medium-high permittivity. Journal of Alloys and Compounds, 2020, 820, 153159.	5.5	8
93	Two novel A4B3O12-type microwave ceramics with high-Q and near-zero τf. Journal of Materials Research, 2010, 25, 1239-1242.	2.6	7
94	Microwave dielectric properties of temperature stable (1Ââ^'Âx)BaCaV2O7–xTiO2 composite ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 9134-9138.	2.2	7
95	Sintering behavior and microwave dielectric properties of LiMVO4 (MÂ=ÂMg, Zn). Journal of Materials Science: Materials in Electronics, 2015, 26, 9117-9121.	2.2	7
96	Temperature stable microwave dielectric ceramics in Li1.33xZn2-2xTi1+0.67xO4 (0.75Â<ÂxÂ<Â1) cubic spinels and their chemical compatibility with silver. Journal of Alloys and Compounds, 2017, 722, 1002-1007.	5.5	7
97	Perovskite MAPb(Br1â^'Cl)3 single crystals: Solution growth and electrical properties. Journal of Crystal Growth, 2020, 549, 125869.	1.5	7
98	Principal element design of garnets to access structure stability and excellent microwave dielectric properties. Journal of the American Ceramic Society, 2022, 105, 4805-4814.	3.8	7
99	Ba ₄ Ln ₂ Fe ₂ Nb ₈ O ₃₀ (Ln = Eu, Gd) Ferroelectric Ceramics. Ferroelectrics, 2010, 404, 33-38.	0.6	6
100	Characterization and dielectric properties of Sr4M2Ti4Ta6O30 (M=Pr and Eu) ceramics. Journal of Alloys and Compounds, 2010, 500, L9-L11.	5.5	6
101	Characterization and microwave dielectric properties of BiCa2VO6 ceramic. Journal of Materials Science: Materials in Electronics, 2015, 26, 9546-9551.	2.2	6
102	Li2Zn2W2O9: A novel low-temperature sintering microwave dielectric ceramic with corundum structure. Ceramics International, 2016, 42, 5553-5557.	4.8	6
103	Effects of barium substitution on the sintering behavior, dielectric properties of Ca ₂ Nb ₂ O ₇ ferroelectric ceramics. Journal of Advanced Dielectrics, 2017, 07, 1750013.	2.4	6
104	Preparation, crystal structure, and dielectric characterization of Li ₂ W ₂ O ₇ ceramic at RF and microwave frequency range. Journal of Advanced Dielectrics, 2017, 07, 1720001.	2.4	6
105	Temperatureâ€stable unfilled tungsten bronze dielectric ceramics: Ba _{3.5} Sm _{1.5} Fe _{0.75} Nb _{9.25} O ₃₀ . International Journal of Applied Ceramic Technology, 2017, 14, 269-273.	2.1	6
106	Reaction sintering of a rock salt structured Li4WO5 ceramic and its microwave dielectric properties. Journal of Materials Science: Materials in Electronics, 2018, 29, 6397-6402.	2.2	6
107	Dielectric properties of Ln2O3-WO3 ceramics at microwave frequencies. Materials Chemistry and Physics, 2018, 206, 110-115.	4.0	6
108	Low temperature synthesis and dielectric characterisation of La ₂ Mo ₂ O ₉ ceramic at RF and microwave frequencies. Advances in Applied Ceramics, 2020, 119, 387-392.	1.1	6

#	Article	IF	CITATIONS
109	Effects of sintering temperature and Ca substitution on microwave dielectric properties of Mg3V2O8. Journal of Materials Science: Materials in Electronics, 2015, 26, 5342-5346.	2.2	5
110	Effects of Zn non-stoichiometry on the phase evolution and microwave dielectric properties of Li2Zn1â"xGe3O8 (0 â‰â€‰x â‰â€‰0.2) spinels. Journal of Materials Science: Materials in Electronio 15605-15611.	cs,22017, 1	285
111	Influence of Ti4+ substitution for Ta5+ on the crystal structure, Raman spectra, and microwave dielectric properties of Ba3Ta4-4xTi4+5xO21 ceramics. Ceramics International, 2020, 46, 4197-4203.	4.8	5
112	Phase transformation and ionic conductivity mechanism of a low-temperature sintering semiconductor Na2CaV4O12. Journal of Alloys and Compounds, 2021, 886, 161259.	5.5	5
113	Dielectric and impedance spectroscopy analysis of LiCa ₃ MgV ₃ O ₁₂ with garnet structure. Materials Research Innovations, 2016, 20, 117-120.	2.3	4
114	Temperature stable microwave dielectric ceramics in LiCa3â^'x Sr x MgV3O12 ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 10958-10962.	2.2	4
115	In Situ Printing and Functionalization of Hybrid Polymer-Ceramic Composites Using a Commercial 3D Printer and Dielectrophoresis—A Novel Conceptual Design. Polymers, 2021, 13, 3979.	4.5	4
116	Structure and relaxor ferroelectric behavior of the novel tungsten bronze type ceramic Sr5BiTi3Nb7O30. Journal of Applied Physics, 2022, 131, .	2.5	4
117	INFLUENCE OF n ON STRUCTURE AND MICROWAVE DIELECTRIC PROPERTIES OF SOME A _n B _{n - 1} O _{3n} PEROVSKITES. Journal of Advanced Dielectrics, 2011, 01, 135-140.	2.4	3
118	Phase transformation and microwave dielectric properties of Ba4LiTa3â^'xSbxO12. Ceramics International, 2015, 41, 6653-6656.	4.8	3
119	Sintering Behavior, Microstructure, and Microwave Dielectric Properties of Li4(1+x)WO5 (0Ââ‰ÂxÂâ‰Â0.08). Journal of Electronic Materials, 2017, 46, 4047-4051.	2.2	3
120	Microwave dielectric properties of Na 2x Ba 1-x Li 2 Ti 6 O 14 ceramics and their chemical compatibility with silver. Materials Chemistry and Physics, 2017, 195, 275-282.	4.0	3
121	Two low-firing microwave dielectric ceramics Na2LnMg2V3O12 (Ln = Pr, Yb) and their chemical compatibility with silver. Journal of Materials Science: Materials in Electronics, 2017, 28, 12342-12347.	2.2	3
122	Synthesis and microwave dielectric properties of an electronic ceramic Y2WO6 for wireless communications. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126811.	2.1	3
123	Polar molecules realignment in CH3NH3PbI3 by strain gradient. Materials Letters, 2020, 275, 128106.	2.6	3
124	An ultra-low-firing NaBi3V2O10 ceramic and its dielectric properties at RF and microwave frequency bands. Journal of Materials Science: Materials in Electronics, 2020, 31, 7219-7225.	2.2	3
125	Influence of Lithium Substitution for Zinc on Crystal Structure and Microwave Dielectric Properties of Willemite Li2x Zn2â°x GeO4. ECS Journal of Solid State Science and Technology, 2020, 9, 073005.	1.8	3
126	The flexoelectric transition in CaCu ₃ Ti ₄ O ₁₂ material with colossal permittivity. Journal of Applied Physics, 2022, 132, 024101.	2.5	3

#	ARTICLE	IF	CITATIONS
127	Temperature-stable and low loss Fe-containing dielectrics in BaO-Ln2O3-Fe2O3-Ta2O5 system. Journal of Materials Science: Materials in Electronics, 2011, 22, 1208-1212.	2.2	2
128	Dielectric and complex impedance analysis of Sr5Nb4TiO17 ceramic with perovskite-like structure. Journal of Materials Science: Materials in Electronics, 2015, 26, 8714-8719.	2.2	2
129	Phase Transition and Microwave Dielectric Properties of Low-Temperature Sintered BiCu2VO6 Ceramic and its Chemical Compatibility with Silver. Journal of Electronic Materials, 2016, 45, 262-266.	2.2	2
130	Microstructure and microwave Dielectric Properties of Sm _{0.5} Y _{0.5} VO ₄ Ceramics. IOP Conference Series: Materials Science and Engineering, 0, 423, 012071.	0.6	2
131	High-temperature dielectric relaxation mechanism in Ba4SmFe0.5Nb9.5O30 tungsten bronze ceramics. Ceramics International, 2018, 44, S224-S227.	4.8	2
132	Na2CaV4O12: A low-temperature-firing dielectric with lightweight, low relative permittivity, and dielectric anomaly around 515 C. Ceramics International, 2021, 48, 6899-6899.	4.8	2
133	Preparation, structure and dielectric properties of tungsten bronze ferroelectrics in SrO-Eu2O3-TiO2-Nb2O5 system. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 311-314.	1.0	1
134	Improvement in thermal stability of resonance frequency of LiCa3MgV3O12 ceramics through compositional modulation. Journal of Materials Science: Materials in Electronics, 2020, 31, 10605-10611.	2.2	1
135	Lowered sintering temperature and modulated microwave dielectric properties in Mg2SiO4 forsterite via Ge substitution. Journal of Materials Science: Materials in Electronics, 0, , 1.	2.2	1
136	Preparation, characterization and dielectric properties of Sr5RTi3Ta7O30 (R=Pr and Eu) ferroelectric ceramics. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 291-294.	1.0	0
137	Deep learning-based semantic segmentation of grain morphologies in ceramics. , 2019, , .		0
138	Lowered sintering temperature and improved microwave dielectric properties in a vanadium tantalate via in-situ adjusting V5+/Ta5+ molar ratio. Journal of Materials Science: Materials in Electronics, 0, , 1.	2.2	0