
Riccardo Storchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4146672/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Melanopsin-Driven Light Adaptation in Mouse Vision. Current Biology, 2014, 24, 2481-2490.	3.9	121
2	Rods progressively escape saturation to drive visual responses in daylight conditions. Nature Communications, 2017, 8, 1813.	12.8	99
3	Melanopsin Contributions to the Representation of Images in the Early Visual System. Current Biology, 2017, 27, 1623-1632.e4.	3.9	90
4	Modulation of Fast Narrowband Oscillations in the Mouse Retina and dLGN According to Background Light Intensity. Neuron, 2017, 93, 299-307.	8.1	73
5	Cooperative N-methyl-d-aspartate (NMDA) receptor antagonism and μ-opioid receptor agonism mediate the methadone inhibition of the spinal neuron pain-related hyperactivity in a rat model of neuropathic pain. Pharmacological Research, 2009, 60, 284-290.	7.1	66
6	Melanopsin-driven increases in maintained activity enhance thalamic visual response reliability across a simulated dawn. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5734-43.	7.1	48
7	Photoreceptive retinal ganglion cells control the information rate of the optic nerve. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11817-E11826.	7.1	39
8	Can We See with Melanopsin?. Annual Review of Vision Science, 2020, 6, 453-468.	4.4	37
9	Comparison of latency and rate coding for the direction of whisker deflection in the subcortical somatosensory pathway. Journal of Neurophysiology, 2012, 108, 1810-1821.	1.8	36
10	Spatial receptive fields in the retina and dorsal lateral geniculate nucleus of mice lacking rods and cones. Journal of Neurophysiology, 2015, 114, 1321-1330.	1.8	30
11	A High-Dimensional Quantification of Mouse Defensive Behaviors Reveals Enhanced Diversity and Stimulus Specificity. Current Biology, 2020, 30, 4619-4630.e5.	3.9	20
12	Using a bistable animal opsin for switchable and scalable optogenetic inhibition of neurons. EMBO Reports, 2021, 22, e51866.	4.5	20
13	Contribution by DRt descending facilitatory pathways to maintenance of spinal neuron sensitization in rats. Brain Research, 2008, 1188, 69-75.	2.2	19
14	The impact of temporal modulations in irradiance under light adapted conditions on the mouse suprachiasmatic nuclei (SCN). Scientific Reports, 2017, 7, 10582.	3.3	17
15	Measuring vision using innate behaviours in mice with intact and impaired retina function. Scientific Reports, 2019, 9, 10396.	3.3	17
16	Predicting Spike Occurrence and Neuronal Responsiveness from LFPs in Primary Somatosensory Cortex. PLoS ONE, 2012, 7, e35850.	2.5	17
17	Neuronal Functional Connection Graphs among Multiple Areas of the Rat Somatosensory System during Spontaneous and Evoked Activities. PLoS Computational Biology, 2013, 9, e1003104.	3.2	15
18	The contribution of inner and outer retinal photoreceptors to infraâ€ s low oscillations in the rat olivary pretectal nucleus. European Journal of Neuroscience, 2016, 43, 823-833.	2.6	12

RICCARDO STORCHI

#	Article	IF	CITATIONS
19	Melanopsin supports irradianceâ€driven changes in maintained activity in the superior colliculus of the mouse. European Journal of Neuroscience, 2016, 44, 2314-2323.	2.6	7
20	Infraâ€ s low modulation of fast beta/gamma oscillations in the mouse visual system. Journal of Physiology, 2021, 599, 1631-1650.	2.9	7
21	A Simple Stimulatory Device for Evoking Point-like Tactile Stimuli: A Searchlight for LFP to Spike Transitions. Journal of Visualized Experiments, 2014, , .	0.3	4
22	Extraction and Characterization of Essential Discharge Patterns from Multisite Recordings of Spiking Ongoing Activity. PLoS ONE, 2009, 4, e4299.	2.5	3
23	A Measure of Concurrent Neural Firing Activity Based on Mutual Information. Neuroinformatics, 2021, 19, 719-735.	2.8	2
24	Modeling neuronal ensemble firing activity through intermittent Chaos. , 2010, , .		1
25	Application of the k-medoids Partitioning Algorithm for Clustering of Time Series Data. , 2020, , .		1
26	Visual functions for melanopsin in mice. Journal of Vision, 2013, 13, T6-T6.	0.3	0
27	Application of Agglomerative Hierarchical Clustering for Clustering of Time Series Data. , 2020, , .		0