Masaaki Yoshida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4146534/publications.pdf

Version: 2024-02-01

414414 516710 1,065 39 16 32 citations g-index h-index papers 39 39 39 1480 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	ATR-SEIRAS Investigation of the Fermi Level of Pt Cocatalyst on a GaN Photocatalyst for Hydrogen Evolution under Irradiation. Journal of the American Chemical Society, 2009, 131, 13218-13219.	13.7	145
2	In Situ Ambient Pressure XPS Study of CO Oxidation Reaction on Pd(111) Surfaces. Journal of Physical Chemistry C, 2012, 116, 18691-18697.	3.1	135
3	Sulfur-doped g-C3N4 nanosheets for photocatalysis: Z-scheme water splitting and decreased biofouling. Journal of Colloid and Interface Science, 2020, 567, 202-212.	9.4	90
4	Direct Observation of Active Nickel Oxide Cluster in Nickel–Borate Electrocatalyst for Water Oxidation by In Situ O K-Edge X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 19279-19286.	3.1	80
5	Influence of Phosphorus Doping on Triazole-Based g-C ₃ N ₅ Nanosheets for Enhanced Photoelectrochemical and Photocatalytic Performance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 24907-24915.	8.0	70
6	Active Surface Oxygen for Catalytic CO Oxidation on Pd(100) Proceeding under Near Ambient Pressure Conditions. Journal of Physical Chemistry Letters, 2012, 3, 3182-3187.	4.6	67
7	In situ analysis of catalytically active Pd surfaces for CO oxidation with near ambient pressure XPS. Catalysis Today, 2016, 260, 14-20.	4.4	44
8	Photoexcited Hole Transfer to a MnOxCocatalyst on a SrTiO3Photoelectrode during Oxygen Evolution Studied by In Situ X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 24302-24309.	3.1	42
9	Selective Catalyst for Oxygen Evolution in Neutral Brine Electrolysis: An Oxygen-Deficient Manganese Oxide Film. ACS Catalysis, 2021, 11, 6390-6397.	11.2	36
10	In situ observation of carrier transfer in the Mn-oxide/Nb:SrTiO3 photoelectrode by X-ray absorption spectroscopy. Chemical Communications, 2013, 49, 7848.	4.1	32
11	Decoration of SrTiO3 nanofibers by BiOI for photocatalytic methyl orange degradation under visible light irradiation. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 264-272.	5. 3	31
12	In Situ Photoemission Observation of Catalytic CO Oxidation Reaction on Pd(110) under Near-Ambient Pressure Conditions: Evidence for the Langmuir–Hinshelwood Mechanism. Journal of Physical Chemistry C, 2013, 117, 20617-20624.	3.1	26
13	<i>Operando</i> Observations of a Manganese Oxide Electrocatalyst for Water Oxidation Using Hard/Tender/Soft X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 23611-23618.	3.1	22
14	Development of BiOI as an effective photocatalyst for oxygen evolution reaction under simulated solar irradiation. Catalysis Science and Technology, 2020, 10, 3223-3231.	4.1	22
15	Structural Relationship between CoO ₆ Cluster and Phosphate Species in a Cobalt–Phosphate Water Oxidation Catalyst Investigated by Co and P K-edge XAFS. Chemistry Letters, 2016, 45, 277-279.	1.3	21
16	Operando Observation of NO Reduction by CO on Ir(111) Surface Using NAP-XPS and Mass Spectrometry: Dominant Reaction Pathway to N ₂ Formation under Near Realistic Conditions. Journal of Physical Chemistry C, 2017, 121, 1763-1769.	3.1	19
17	In situ S-K XANES study of polymer electrolyte fuel cells: changes in the chemical states of sulfonic groups depending on humidity. Physical Chemistry Chemical Physics, 2016, 18, 25183-25190.	2.8	17
18	Real-time observation of CO oxidation reaction on $Ir(111)$ surface at 33 ms resolution by means of wavelength-dispersive near-edge x-ray absorption fine structure spectroscopy. Applied Physics Letters, 2011, 99, .	3.3	16

#	Article	IF	CITATIONS
19	Lanthanum nanocluster/ZIF-8 for boosting catalytic CO ₂ /glycerol conversion using MgCO ₃ as a dehydrating agent. Journal of Materials Chemistry A, 2021, 9, 7048-7058.	10.3	16
20	CO Adsorption on Pd–Au Alloy Surface: Reversible Adsorption Site Switching Induced by High-Pressure CO. Journal of Physical Chemistry C, 2016, 120, 416-421.	3.1	15
21	Integration of Active Nickel Oxide Clusters by Amino Acids for Water Oxidation. Journal of Physical Chemistry C, 2017, 121, 255-260.	3.1	15
22	Electrochromic Characteristics of a Nickel Borate Thin Film Investigated by In Situ XAFS and UV/vis Spectroscopy. Electrochemistry, 2014, 82, 355-358.	1.4	13
23	Nanometer-Thick Nickel Oxide Films Prepared from Alanine-Chelated Coordination Complexes for Electrochromic Smart Windows. ACS Applied Nano Materials, 2020, 3, 9528-9537.	5.0	11
24	Enhancement of solid base activity for porous boron nitride catalysts by controlling active structure using post treatment. Applied Catalysis A: General, 2020, 608, 117843.	4.3	10
25	<scp>I</scp> n Situ Observation of Model Catalysts under Reaction Conditions Using <scp>X</scp> â€ray Coreâ€Level Spectroscopy. Chemical Record, 2014, 14, 806-818.	5.8	9
26	Improvement in Cobalt Phosphate Electrocatalyst Activity toward Oxygen Evolution from Water by Glycine Molecule Addition and Functional Details. Analytical Sciences, 2020, 36, 35-39.	1.6	9
27	In Situ XAFS Study of the Photoinduced Potential Shift of a MnO <i>x</i> Cocatalyst on a SrTiO3 Photocatalyst. Chemistry Letters, 2014, 43, 1725-1727.	1.3	8
28	Iron Oxyhydroxide Hierarchical Micro/Nanostructured Film as Catalyst for Electrochemical Oxygen Evolution Reaction. Analytical Sciences, 2020, 36, 27-31.	1.6	6
29	Effects of electrolyte pH on the formation of nickel oxide films and the corresponding electrochromic properties. Journal of the Taiwan Institute of Chemical Engineers, 2020, 110, 34-40.	5.3	6
30	Assessing nickel oxide electrocatalysts incorporating diamines and having improved oxygen evolution activity using <i>operando</i> UV/visible and X-ray absorption spectroscopy. Physical Chemistry Chemical Physics, 2021, 23, 23280-23287.	2.8	6
31	Development of a MnOOH Mineral Electrocatalyst for Water Splitting by Controlling the Surface Defects of a Naturally Occurring Ore. Chemistry Letters, 2022, 51, 50-53.	1.3	6
32	Forward and backward electron transfer on Pt loaded TiO2 photocatalysts under visible-light illumination. Applied Physics Letters, 2021, 119, .	3.3	4
33	Molecular orientation change during adsorption of NO and N2O on Ir(111) observed by real-time wavelength-dispersive x-ray absorption spectroscopy with polarization switching. Applied Physics Letters, 2012, 101, .	3.3	3
34	Porous Boron Nitride as a Weak Solid Base Catalyst. ChemCatChem, 2020, 12, 6033-6039.	3.7	3
35	Insights into the deposition of nanostructured nickel oxides by amino acid chelated Complexes: Benefits of mixed side chains in the formation of nanostructures for Energy-efficient Electrochromic windows. Applied Surface Science, 2021, 568, 150914.	6.1	3
36	Development of a MnCO3-based Electrocatalyst for Water Oxidation from Rhodochrosite Ore. Chemistry Letters, 2022, 51, 723-727.	1.3	3

3

#	Article	IF	CITATIONS
37	Structure and Photo-Induced Charge Transfer of Pyridine Molecules Adsorbed on TiO2(110): A NEXAFS and Core-Hole-Clock Study. Electrochemistry, 2014, 82, 341-345.	1.4	2
38	Enhanced Electrochromic Properties of Hierarchical Iron Oxyhydroxide Hollow Sphere Array. Chemistry Letters, 2022, 51, 227-230.	1.3	1
39	Mixing nitrogen-containing compounds for synthesis of porous boron nitride for improved porosity, surface functionality, and solid base catalytic activity. Applied Catalysis A: General, 2022, 638, 118635.	4.3	1