
Jiafu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4145541/publications.pdf Version: 2024-02-01

LIAEU WANC

#	Article	IF	CITATIONS
1	Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. Journal of Cell Science, 2007, 120, 2864-2874.	1.2	230
2	Activation of TRPV1 Mediates Calcitonin Gene-Related Peptide Release, Which Excites Trigeminal Sensory Neurons and Is Attenuated by a Retargeted Botulinum Toxin with Anti-Nociceptive Potential. Journal of Neuroscience, 2009, 29, 4981-4992.	1.7	207
3	New mechanism underlying IL-31–induced atopic dermatitis. Journal of Allergy and Clinical Immunology, 2018, 141, 1677-1689.e8.	1.5	131
4	Novel Chimeras of Botulinum Neurotoxins A and E Unveil Contributions from the Binding, Translocation, and Protease Domains to Their Functional Characteristics. Journal of Biological Chemistry, 2008, 283, 16993-17002.	1.6	102
5	TNFα induces co-trafficking of TRPV1/TRPA1 in VAMP1-containing vesicles to the plasmalemma via Munc18–1/syntaxin1/SNAP-25 mediated fusion. Scientific Reports, 2016, 6, 21226.	1.6	102
6	A Dileucine in the Protease of Botulinum Toxin A Underlies Its Long-lived Neuroparalysis. Journal of Biological Chemistry, 2011, 286, 6375-6385.	1.6	78
7	Neuro-exocytosis: botulinum toxins as inhibitory probes and versatile therapeuticsâ~†. Current Opinion in Pharmacology, 2009, 9, 326-335.	1.7	71
8	Extravesicular intraneuronal migration of internalized botulinum neurotoxins without detectable inhibition of distal neurotransmission. Biochemical Journal, 2012, 441, 443-452.	1.7	53
9	Th2 Modulation of Transient Receptor Potential Channels: An Unmet Therapeutic Intervention for Atopic Dermatitis. Frontiers in Immunology, 2021, 12, 696784.	2.2	53
10	Role of SNARE proteins in tumourigenesis and their potential as targets for novel anti-cancer therapeutics. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1856, 1-12.	3.3	45
11	Novel insights into the TRPV3-mediated itch in atopic dermatitis. Journal of Allergy and Clinical Immunology, 2021, 147, 1110-1114.e5.	1.5	39
12	Novel therapeutics based on recombinant botulinum neurotoxins to normalize the release of transmitters and pain mediators. FEBS Journal, 2011, 278, 4454-4466.	2.2	38
13	Longer-acting and highly potent chimaeric inhibitors of excessive exocytosis created with domains from botulinum neurotoxin A and B. Biochemical Journal, 2012, 444, 59-67.	1.7	38
14	Novel chimeras of botulinum and tetanus neurotoxins yield insights into their distinct sites of neuroparalysis. FASEB Journal, 2012, 26, 5035-5048.	0.2	35
15	Targeted delivery into motor nerve terminals of inhibitors for SNAREâ€cleaving proteases via liposomes coupled to an atoxic botulinum neurotoxin. FEBS Journal, 2012, 279, 2555-2567.	2.2	31
16	<scp>SNAP</scp> â€23 and <scp>VAMP</scp> â€3 contribute to the release of <scp>IL</scp> â€6 and <scp>TNF</scp> α from a human synovial sarcoma cell line. FEBS Journal, 2014, 281, 750-765.	2.2	30
17	Two Protein Trafficking Processes at Motor Nerve Endings Unveiled by Botulinum Neurotoxin E. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 410-418.	1.3	29
18	Arrangement of Kv1 α subunits dictates sensitivity to tetraethylammonium. Journal of General Physiology, 2010, 136, 273-282.	0.9	25

JIAFU WANG

#	Article	IF	CITATIONS
19	Molecular components required for resting and stimulated endocytosis of botulinum neurotoxins by glutamatergic and peptidergic neurons. FASEB Journal, 2013, 27, 3167-3180.	0.2	21
20	A novel therapeutic with two SNAP-25 inactivating proteases shows long-lasting anti-hyperalgesic activity in a rat model of neuropathic pain. Neuropharmacology, 2017, 118, 223-232.	2.0	21
21	Interventions in the <scp>B</scp> â€ŧype natriuretic peptide signalling pathway as a means of controlling chronic itch. British Journal of Pharmacology, 2020, 177, 1025-1040.	2.7	21
22	Selective Cleavage of SNAREs in Sensory Neurons Unveils Protein Complexes Mediating Peptide Exocytosis Triggered by Different Stimuli. Molecular Neurobiology, 2014, 50, 574-588.	1.9	19
23	A SNAP-25 cleaving chimera of botulinum neurotoxin /A and /E prevents TNFαâ^'induced elevation of the activities of native TRP channels on early postnatal rat dorsal root ganglion neurons. Neuropharmacology, 2018, 138, 257-266.	2.0	19
24	Role of SNAREs in Atopic Dermatitis–Related Cytokine Secretion and Skin-Nerve Communication. Journal of Investigative Dermatology, 2019, 139, 2324-2333.	0.3	18
25	Pharmacological characteristics of Kv1.1- and Kv1.2-containing channels are influenced by the stoichiometry and positioning of their $\hat{1}\pm$ subunits. Biochemical Journal, 2013, 454, 101-108.	1.7	17
26	Targeted delivery of a SNARE protease to sensory neurons using a single chain antibody (scFv) against the extracellular domain of P2X3 inhibits the release of a pain mediator. Biochemical Journal, 2014, 462, 247-256.	1.7	17
27	Therapeutic effectiveness of botulinum neurotoxin A: Potent blockade of autonomic transmission by targeted cleavage of only the pertinent SNAP-25. Neuropharmacology, 2013, 70, 287-295.	2.0	15
28	New Engineered-Botulinum Toxins Inhibit the Release of Pain-Related Mediators. International Journal of Molecular Sciences, 2020, 21, 262.	1.8	15
29	Innate immune regulates cutaneous sensory IL-13 receptor alpha 2 to promote atopic dermatitis. Brain, Behavior, and Immunity, 2021, 98, 28-39.	2.0	14
30	Selective Expression of a SNARE-Cleaving Protease in Peripheral Sensory Neurons Attenuates Pain-Related Gene Transcription and Neuropeptide Release. International Journal of Molecular Sciences, 2021, 22, 8826.	1.8	12
31	The PLAUR signaling promotes chronic pruritus. FASEB Journal, 2022, 36, .	0.2	10
32	Position-dependent attenuation by Kv1.6 of N-type inactivation of Kv1.4-containing channels. Biochemical Journal, 2011, 438, 389-396.	1.7	8
33	Conjugate of an IgG Binding Domain with Botulinum Neurotoxin A Lacking the Acceptor Moiety Targets Its SNARE Protease into TrkA-Expressing Cells When Coupled to Anti-TrkA IgG or Fc-βNGF. Bioconjugate Chemistry, 2017, 28, 1684-1692.	1.8	8
34	Neuronal entry and high neurotoxicity of botulinum neurotoxin A require its N-terminal binding sub-domain. Scientific Reports, 2017, 7, 44474.	1.6	8
35	Construction of cytopathic PK-15 cell model of classical swine fever virus. Science Bulletin, 2003, 48, 887-891.	4.3	6
36	ILâ€20 promotes cutaneous inflammation and peripheral itch sensation in atopic dermatitis. FASEB Journal, 2022, 36, e22334.	0.2	5

JIAFU WANG

#	Article	IF	CITATIONS
37	Construction of cDNA library, nucleotide sequence and analysis of entire genome of classical swine fever virus strain Shimen. Science Bulletin, 2000, 45, 367-369.	1.7	3
38	Fusion of Golgiâ€derived vesicles mediated by <scp>SNAP</scp> â€25 is essential for sympathetic neuron outgrowth but relatively insensitive to botulinum neurotoxins <i>inÂvitro</i> . FEBS Journal, 2014, 281, 3243-3260.	2.2	3
39	Engineering of botulinum neurotoxins as novel therapeutic tools. , 2015, , 995-1015.		3
40	Multiple Steps in the Blockade of Exocytosis by Botulinum Neurotoxins. , 2009, , 1-14.e1.		2
41	Inhibiting Keratinocyte-Derived Signal Transducer and Activator of Transcription 6 Improved Atopic Dermatitis in Mice. Journal of Investigative Dermatology, 2022, 142, 3341-3345.e14.	0.3	2