Gregory E Fasshauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4145466/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Divergence-free quasi-interpolation. Applied and Computational Harmonic Analysis, 2022, 60, 471-488.	1.1	Ο
2	Refined error estimates for Green kernel-based interpolation. Applied Mathematics Letters, 2022, 133, 108258.	1.5	3
3	Optimality and Regularization Properties of Quasi-Interpolation: Deterministic and Stochastic Approaches. SIAM Journal on Numerical Analysis, 2020, 58, 2059-2078.	1.1	9
4	Intraday Load Forecasts with Uncertainty. Energies, 2019, 12, 1833.	1.6	3
5	A stabilized radial basis-finite difference (RBF-FD) method with hybrid kernels. Computers and Mathematics With Applications, 2019, 77, 2354-2368.	1.4	33
6	Hybrid Gaussian-cubic radial basis functions for scattered data interpolation. Computational Geosciences, 2018, 22, 1203-1218.	1.2	29
7	Improved FDTD method around dielectric and PEC interfaces using RBF-FD techniques. , 2018, , .		Ο
8	An augmented MFS approach for brain activity reconstruction. Mathematics and Computers in Simulation, 2017, 141, 3-15.	2.4	19
9	Stable Likelihood Computation for Gaussian Random Fields. Applied and Numerical Harmonic Analysis, 2017, , 917-943.	0.1	1
10	A stable method for the evaluation of Gaussian radial basis function solutions of interpolation and collocation problems. Computers and Mathematics With Applications, 2016, 72, 178-193.	1.4	35
11	A novel numerical meshless approach for electric potential estimation in transcranial stimulation. AIP Conference Proceedings, 2015, , .	0.3	2
12	A Meshfree Solver for the MEG Forward Problem. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	21
13	The Method of Fundamental Solutions in Solving Coupled Boundary Value Problems for M/EEG. SIAM Journal of Scientific Computing, 2015, 37, B570-B590.	1.3	22
14	Solving support vector machines in reproducing kernel Banach spaces with positive definite functions. Applied and Computational Harmonic Analysis, 2015, 38, 115-139.	1.1	23
15	An introduction to the Hilbert-Schmidt SVD using iterated Brownian bridge kernels. Numerical Algorithms, 2015, 68, 393-422.	1.1	39
16	Initiating a Programmatic Assessment Report. Primus, 2014, 24, 403-420.	0.3	3
17	Reproducing kernels of Sobolev spaces via a green kernel approach with differential operators and boundary operators. Advances in Computational Mathematics, 2013, 38, 891-921.	0.8	19
18	A Kernel-Based Collocation Method for Elliptic Partial Differential Equations With Random Coefficients. Springer Proceedings in Mathematics and Statistics, 2013, , 331-347.	0.1	1

#	Article	IF	CITATIONS
19	Kernel-Based Collocation Methods Versus Galerkin Finite Element Methods for Approximating Elliptic Stochastic Partial Differential Equations. Lecture Notes in Computational Science and Engineering, 2013, , 155-170.	0.1	11
20	Approximation of stochastic partial differential equations by a kernel-based collocation method. International Journal of Computer Mathematics, 2012, 89, 2543-2561.	1.0	36
21	Stable Evaluation of Gaussian Radial Basis Function Interpolants. SIAM Journal of Scientific Computing, 2012, 34, A737-A762.	1.3	159
22	On Dimension-independent Rates of Convergence for Function Approximation with Gaussian Kernels. SIAM Journal on Numerical Analysis, 2012, 50, 247-271.	1.1	25
23	Multivariate interpolation with increasingly flat radial basis functions of finite smoothness. Advances in Computational Mathematics, 2012, 36, 485-501.	0.8	24
24	Application of two radial basis function-pseudospectral meshfree methods to three-dimensional electromagnetic problems. IET Science, Measurement and Technology, 2011, 5, 206-210.	0.9	7
25	Reproducing kernels of generalized Sobolev spaces via a Green function approach with distributional operators. Numerische Mathematik, 2011, 119, 585-611.	0.9	30
26	Application of radial basis functions to represent optical freeform surfaces. Proceedings of SPIE, 2010, , .	0.8	6
27	Natural frequencies of thick plates made of orthotropic, monoclinic, and hexagonal materials by a meshless method. Journal of Sound and Vibration, 2009, 319, 984-992.	2.1	25
28	Preconditioning of Radial Basis Function Interpolation Systems via Accelerated Iterated Approximate Moving Least Squares Approximation. , 2009, , 57-75.		9
29	Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter. Composite Structures, 2008, 86, 328-343.	3.1	151
30	Meshfree approximation methods for free-form surface representation in optical design with applications to head-worn displays. , 2008, , .		3
31	Analysis of natural frequencies of composite plates by an RBF-pseudospectral method. Composite Structures, 2007, 79, 202-210.	3.1	91
32	On choosing "optimal―shape parameters for RBF approximation. Numerical Algorithms, 2007, 45, 345-368.	1.1	462
33	Iterated Approximate Moving Least Squares Approximation. , 2007, , 221-239.		6
34	Computation of natural frequencies of shear deformable beams and plates by an RBF-pseudospectral method. Computer Methods in Applied Mechanics and Engineering, 2006, 196, 134-146.	3.4	145
35	Dual bases and discrete reproducing kernels: a unified framework for RBF and MLS approximation. Engineering Analysis With Boundary Elements, 2005, 29, 313-325.	2.0	7
36	A volumetric integral radial basis function method for time-dependent partial differential equations. I. Formulation. Engineering Analysis With Boundary Elements, 2004, 28, 1191-1206.	2.0	58

GREGORY E FASSHAUER

#	Article	IF	CITATIONS
37	Toward approximate moving least squares approximation with irregularly spaced centers. Computer Methods in Applied Mechanics and Engineering, 2004, 193, 1231-1243.	3.4	17
38	Approximate Moving Least-Squares Approximation with Compactly Supported Radial Weights. Lecture Notes in Computational Science and Engineering, 2003, , 105-116.	0.1	11
39	Newton iteration with multiquadrics for the solution of nonlinear PDEs. Computers and Mathematics With Applications, 2002, 43, 423-438.	1.4	111
40	Algorithms defined by Nash iteration: some implementations via multilevel collocation and smoothing. Journal of Computational and Applied Mathematics, 2000, 119, 161-183.	1.1	9
41	Newton iteration for partial differential equations and the approximation of the identity. Numerical Algorithms, 2000, 25, 181-195.	1.1	12
42	Hermite interpolation with radial basis functions on spheres. Advances in Computational Mathematics, 1999, 10, 81-96.	0.8	14
43	Solving differential equations with radial basis functions: multilevel methods and smoothing. Advances in Computational Mathematics, 1999, 11, 139-159.	0.8	176
44	Title is missing!. Advances in Computational Mathematics, 1999, 10, 1-27.	0.8	20
45	Minimal energy surfaces using parametric splines. Computer Aided Geometric Design, 1996, 13, 45-79.	0.5	40