
Bernay Cifuentes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4145428/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrogen production by steam reforming of ethanol on a RhPt/CeO2/SiO2 catalyst: Synergistic effect of the Si:Ce ratio on the catalyst performance. Applied Catalysis A: General, 2016, 523, 283-293.	4.3	38
2	Hydrogen Production by Steam Reforming of Ethanol on Rh-Pt Catalysts: Influence of CeO2, ZrO2, and La2O3 as Supports. Catalysts, 2015, 5, 1872-1896.	3.5	36
3	Controlling sugarcane press-mud fermentation to increase bioethanol steam reforming for hydrogen production. Waste Management, 2019, 98, 1-13.	7.4	27
4	Response Surface Methodology and Aspen Plus Integration for the Simulation of the Catalytic Steam Reforming of Ethanol. Catalysts, 2017, 7, 15.	3.5	25
5	Catalytic hydrodechlorination of trichloroethylene in a novel NaOH/2-propanol/methanol/water system on ceria-supported Pd and Rh catalysts. Journal of Environmental Management, 2015, 158, 1-10.	7.8	23
6	Hydrogen from glucose: A combined study of glucose fermentation, bioethanol purification, and catalytic steam reforming. International Journal of Hydrogen Energy, 2016, 41, 5640-5651.	7.1	22
7	Fuel-cell grade hydrogen production by coupling steam reforming of ethanol and carbon monoxide removal. International Journal of Hydrogen Energy, 2018, 43, 17216-17229.	7.1	21
8	Bioethanol steam reforming over monoliths washcoated with RhPt/CeO2–SiO2: The use of residual biomass to stably produce syngas. International Journal of Hydrogen Energy, 2021, 46, 4007-4018.	7.1	20
9	Integration of steam gasification and catalytic reforming of lignocellulosic biomass as a strategy to improve syngas quality and pollutants removal. Waste Management, 2022, 147, 48-59.	7.4	13
10	Hydrogen purification of actual syngas streams for energy applications: Au-Cu supported over nano-shaped CeO2 as stable catalysts for the carbon monoxide removal. Applied Catalysis A: General, 2020, 598, 117568.	4.3	11
11	Single and Dual Metal Oxides as Promising Supports for Carbon Monoxide Removal from an Actual Syngas: The Crucial Role of Support on the Selectivity of the Au–Cu System. Catalysts, 2019, 9, 852.	3.5	10
12	Monoliths washcoated with AuCu catalysts for CO removal in an ethanol fuel processor: Effect of CeO2–SiO2 dual support on the catalytic performance and reactor cost. International Journal of Hydrogen Energy, 2021, 46, 2166-2181.	7.1	8
13	Biomass Potential for Producing Power via Green Hydrogen. Energies, 2021, 14, 8366.	3.1	8
14	CFD modelling of the air conditioning system for a Tier 2 Data Centre. Advances in Building Energy Research, 2022, 16, 231-261.	2.3	1