Miyoung Yoon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4145026/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative <i>in vitro</i> to <i>in vivo</i> extrapolation of cell-based toxicity assay results. Critical Reviews in Toxicology, 2012, 42, 633-652.	1.9	190
2	Associations of Perfluoroalkyl Substances (PFAS) with Lower Birth Weight: An Evaluation of Potential Confounding by Glomerular Filtration Rate Using a Physiologically Based Pharmacokinetic Model (PBPK). Environmental Health Perspectives, 2015, 123, 1317-1324.	2.8	164
3	Physiologically Based Pharmacokinetic Modeling of Fetal and Neonatal Manganese Exposure in Humans: Describing Manganese Homeostasis during Development. Toxicological Sciences, 2011, 122, 297-316.	1.4	99
4	Evaluating Placental Transfer and Tissue Concentrations of Manganese in the Pregnant Rat and Fetuses after Inhalation Exposures with a PBPK Model. Toxicological Sciences, 2009, 112, 44-58.	1.4	76
5	Alternative approaches for acute inhalation toxicity testing to address global regulatory and non-regulatory data requirements: An international workshop report. Toxicology in Vitro, 2018, 48, 53-70.	1.1	62
6	Analysis of Manganese Tracer Kinetics and Target Tissue Dosimetry in Monkeys and Humans with Multi-Route Physiologically Based Pharmacokinetic Models. Toxicological Sciences, 2011, 120, 481-498.	1.4	59
7	Evaluation of simple in vitro to in vivo extrapolation approaches for environmental compounds. Toxicology in Vitro, 2014, 28, 164-170.	1.1	51
8	Can the observed association between serum perfluoroalkyl substances and delayed menarche be explained on the basis of puberty-related changes in physiology and pharmacokinetics?. Environment International, 2015, 82, 61-68.	4.8	39
9	Quantitative in vitro to in vivo extrapolation (QIVIVE): An essential element for in vitro-based risk assessment. Toxicology, 2015, 332, 1-3.	2.0	37
10	Quantitative bias analysis for epidemiological associations of perfluoroalkyl substance serum concentrations and early onset of menopause. Environment International, 2017, 99, 245-254.	4.8	33
11	Determination of Human Hepatic CYP2C8 and CYP1A2 Age-Dependent Expression to Support Human Health Risk Assessment for Early Ages. Drug Metabolism and Disposition, 2017, 45, 468-475.	1.7	31
12	Excretion of Di-2-ethylhexyl phthalate (DEHP) metabolites in urine is related to body mass index because of higher energy intake in the overweight and obese. Environment International, 2018, 113, 91-99.	4.8	31
13	Lactational Transfer of Manganese in Rats: Predicting Manganese Tissue Concentration in the Dam and Pups from Inhalation Exposure with a Pharmacokinetic Model. Toxicological Sciences, 2009, 112, 23-43.	1.4	30
14	Use of in vitro data in developing a physiologically based pharmacokinetic model: Carbaryl as a case study. Toxicology, 2015, 332, 52-66.	2.0	29
15	Development and Application of a Life-Stage Physiologically Based Pharmacokinetic (PBPK) Model to the Assessment of Internal Dose of Pyrethroids in Humans. Toxicological Sciences, 2020, 173, 86-99.	1.4	29
16	The application of PBPK models in estimating human brain tissue manganese concentrations. NeuroToxicology, 2017, 58, 226-237.	1.4	26
17	Evaluating opportunities for advancing the use of alternative methods in risk assessment through the development of fit-for-purpose in vitro assays. Toxicology in Vitro, 2018, 48, 310-317.	1.1	25
18	Application of a Multi-Route Physiologically Based Pharmacokinetic Model for Manganese to Evaluate Dose-Dependent Neurological Effects in Monkeys. Toxicological Sciences, 2012, 129, 432-446.	1.4	23

MIYOUNG YOON

#	Article	IF	CITATIONS
19	A case study on quantitative in vitro to in vivo extrapolation for environmental esters: Methyl-, propyl- and butylparaben. Toxicology, 2015, 332, 67-76.	2.0	23
20	Using exposure prediction tools to link exposure and dosimetry for risk-based decisions: A case study with phthalates. Chemosphere, 2017, 184, 1194-1201.	4.2	22
21	A Semiphysiologically Based Pharmacokinetic Modeling Approach to Predict the Dose-Exposure Relationship of an Antiparasitic Prodrug/Active Metabolite Pair. Drug Metabolism and Disposition, 2012, 40, 6-17.	1.7	21
22	Application of a combined aggregate exposure pathway and adverse outcome pathway (AEP-AOP) approach to inform a cumulative risk assessment: A case study with phthalates. Toxicology in Vitro, 2020, 66, 104855.	1.1	21
23	Evaluation of Age-Related Pyrethroid Pharmacokinetic Differences in Rats: Physiologically-Based Pharmacokinetic Model Development Using In Vitro Data and In Vitro to In Vivo Extrapolation. Toxicological Sciences, 2019, 169, 365-379.	1.4	19
24	Update on a Pharmacokinetic-Centric Alternative Tier II Program for MMT—Part II: Physiologically Based Pharmacokinetic Modeling and Manganese Risk Assessment. Journal of Toxicology, 2012, 2012, 1-17.	1.4	18
25	Metabolism of deltamethrin and <i>cis</i> and <i>trans</i> permethrin by human expressed cytochrome P450 and carboxylesterase enzymes. Xenobiotica, 2019, 49, 521-527.	0.5	17
26	Fluid Dynamic Modeling to Support the Development of Flow-Based Hepatocyte Culture Systems for Metabolism Studies. Frontiers in Bioengineering and Biotechnology, 2016, 4, 72.	2.0	16
27	Pharmacokinetic bias analysis of the epidemiological associations between serum polybrominated diphenyl ether (BDE-47) and timing of menarche. Environmental Research, 2016, 150, 541-548.	3.7	15
28	Population Life-course exposure to health effects model (PLETHEM): An R package for PBPK modeling. Computational Toxicology, 2020, 13, 100115.	1.8	15
29	Extrahepatic Metabolism by CYP2E1 in PBPK Modeling of Lipophilic Volatile Organic Chemicals: Impacts on Metabolic Parameter Estimation and Prediction of Dose Metrics. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2007, 70, 1527-1541.	1.1	14
30	An in vitro approach for prioritization and evaluation of chemical effects on glucocorticoid receptor mediated adipogenesis. Toxicology and Applied Pharmacology, 2018, 355, 112-126.	1.3	14
31	Addressing Early Life Sensitivity Using Physiologically Based Pharmacokinetic Modeling and In Vitro to In Vivo Extrapolation. Toxicological Research, 2016, 32, 15-20.	1.1	13
32	Quantitative bias analysis of a reported association between perfluoroalkyl substances (PFAS) and endometriosis: The influence of oral contraceptive use. Environment International, 2017, 104, 118-121.	4.8	12
33	Incorporation of <i>inÂvitro</i> metabolism data and physiologically based pharmacokinetic modeling in a risk assessment for chloroprene. Inhalation Toxicology, 2019, 31, 468-483.	0.8	12
34	Reconstructing exposures from biomarkers using exposure-pharmacokinetic modeling – A case study with carbaryl. Regulatory Toxicology and Pharmacology, 2015, 73, 689-698.	1.3	11
35	Deriving an explicit hepatic clearance equation accounting for plasma protein binding and hepatocellular uptake. Toxicology in Vitro, 2013, 27, 11-15.	1.1	10
36	The role of fit-for-purpose assays within tiered testing approaches: A case study evaluating prioritized estrogen-active compounds in an in vitro human uterotrophic assay. Toxicology and Applied Pharmacology, 2020, 387, 114774.	1.3	10

MIYOUNG YOON

#	Article	IF	CITATIONS
37	Systems biology for organotypic cell cultures. ALTEX: Alternatives To Animal Experimentation, 2017, 34, 301-310.	0.9	10
38	Considerations for Improving Metabolism Predictions for In Vitro to In Vivo Extrapolation. Frontiers in Toxicology, 2022, 4, 894569.	1.6	10
39	Assessing children's exposure to manganese in drinking water using a PBPK model. Toxicology and Applied Pharmacology, 2019, 380, 114695.	1.3	9
40	Quantitative bias analysis of the association between subclinical thyroid disease and two perfluoroalkyl substances in a single study. Environmental Research, 2020, 182, 109017.	3.7	9
41	Using quantitative modeling tools to assess pharmacokinetic bias in epidemiological studies showing associations between biomarkers and health outcomes at low exposures. Environmental Research, 2021, 197, 111183.	3.7	9
42	Analysis of biomarker utility using a PBPK/PD model for carbaryl. Frontiers in Pharmacology, 2014, 5, 246.	1.6	8
43	Xenobiotic Metabolism in Alginate-Encapsulated Primary Human Hepatocytes Over Long Timeframes. Applied in Vitro Toxicology, 2018, 4, 238-247.	0.6	7
44	Computational Methods to Predict Toxicity. , 2019, , 287-300.		6
45	Moving Beyond Prioritization Toward True <i>In Vitro</i> Safety Assessment. Applied in Vitro Toxicology, 2016, 2, 67-73.	0.6	5
46	Physiologically Based Pharmacokinetic Modeling in Risk Assessment: Case Study With Pyrethroids. Toxicological Sciences, 2020, 176, 460-469.	1.4	5
47	Updating physiologically based pharmacokinetic models for manganese by incorporating rapid association/dissociation processes in tissues. Toxicology and Applied Pharmacology, 2019, 372, 1-10.	1.3	3
48	The TTC Data Mart: An interactive browser for threshold of toxicological concern calculations. Computational Toxicology, 2020, 15, 100128.	1.8	3
49	Use of <i>in Vitro</i> Data in PBPK Models: An Example of <i>in Vitro</i> to <i>in Vivo</i> Extrapolation with Carbaryl. ACS Symposium Series, 2012, , 323-338.	0.5	2
50	Modeling Manganese Kinetics for Human Health Risk Assessment. Issues in Toxicology, 2014, , 322-354.	0.2	0
51	Physiologically based pharmacokinetic models to support modernized chemical safety assessment. , 2020, , 301-321.		0
52	Systems Pharmacology Modeling. RSC Drug Discovery Series, 2015, , 359-390.	0.2	0