Oksana B Danylyuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4144974/publications.pdf

Version: 2024-02-01

516710 580821 48 750 16 25 g-index citations h-index papers 49 49 49 824 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electrostatic co-assembly of pillar $[\langle i \rangle n \langle i \rangle]$ pyridiniums and calix [4] arene in aqueous media. CrystEngComm, 2022, 24, 2213-2216.	2.6	1
2	Inclusion of Pentamidine in Carboxylated Pillar[5]arene: Late Sequential Crystallization and Diversity of Host–Guest Interactions. Crystal Growth and Design, 2022, 22, 2854-2862.	3.0	4
3	NHC–BIAN–Cu(I)-Catalyzed FriedlÃnder-Type Annulation of 2-Amino-3-(per)fluoroacetylpyridines with Alkynes on Water. Journal of Organic Chemistry, 2022, 87, 6115-6136.	3.2	6
4	Unveiling the structural features of the host–guest complexes of carboxylated pillar[5]arene with viologen derivatives. CrystEngComm, 2021, 23, 1075-1082.	2.6	10
5	Incorporation of carboxylated pillar[5]arene and strontium(<scp>ii</scp>) into supramolecular coordination complexes of different nuclearities. CrystEngComm, 2021, 23, 3265-3269.	2.6	6
6	Solution-mediated and single-crystal to single-crystal transformations of cucurbit[6]uril host–guest complexes with dopamine. CrystEngComm, 2020, 22, 634-638.	2.6	4
7	Visual discrimination of aromatic acid substitution patterns by supramolecular nanocooperativity. Chemical Communications, 2020, 56, 8595-8598.	4.1	5
8	A three-in-one crystal of mixed sized cucurbit[<i>n</i>]uril homologues. CrystEngComm, 2020, 22, 2900-2903.	2.6	1
9	Reversing Chemoselectivity: Simultaneous Positive and Negative Catalysis by Chemically Equivalent Rims of a Cucurbit[7]uril Host. Angewandte Chemie - International Edition, 2019, 58, 11340-11343.	13.8	13
10	Reversing Chemoselectivity: Simultaneous Positive and Negative Catalysis by Chemically Equivalent Rims of a Cucurbit[7]uril Host. Angewandte Chemie, 2019, 131, 11462-11465.	2.0	4
11	Host–guest complexes of cucurbit[6]uril with phenethylamine-type stimulants. CrystEngComm, 2018, 20, 7642-7647.	2.6	7
12	Pillar[6]pyridinium: a hexagonally shaped molecular box that selectively recognizes multicharged anionic species. Chemical Communications, 2018, 54, 6316-6319.	4.1	15
13	Exploring cucurbit[6]uril–peptide interactions in the solid state: crystal structure of cucurbit[6]uril complexes with glycyl-containing dipeptides. CrystEngComm, 2017, 19, 3892-3897.	2.6	11
14	Unprecedented rearrangement of diketopyrrolopyrroles leads to structurally unique chromophores. Chemical Communications, 2017, 53, 11877-11880.	4.1	5
15	Host-guest complexes of local anesthetics with cucurbit[6]uril and para -sulphonatocalix[8]arene in the solid state. Journal of Molecular Structure, 2017, 1150, 28-36.	3.6	9
16	Pillar [4] pyridinium: a square-shaped molecular box. Chemical Communications, 2017, 53, 13320-13323.	4.1	22
17	A Thermo―and Photo‧witchable Ruthenium Initiator For Olefin Metathesis. Chemistry - A European Journal, 2016, 22, 6528-6531.	3.3	21
18	Host–guest complexes of cucurbit[6]uril with the trypanocide drug diminazene and its degradation product 4-aminobenzamidine. CrystEngComm, 2016, 18, 4905-4908.	2.6	4

#	Article	IF	CITATIONS
19	Triggering autocatalytic reaction by host–guest interactions. Chemical Communications, 2016, 52, 4191-4194.	4.1	20
20	Solvent control in the formation of supramolecular host–guest complexes of isoniazid with p-sulfonatocalix[4]arene. CrystEngComm, 2015, 17, 1745-1749.	2.6	10
21	Self-assembling corroles. Chemical Communications, 2015, 51, 8284-8287.	4.1	15
22	Solid-state assembly of carboxylic acid substituted pillar[5]arene and its host–guest complex with tetracaine. CrystEngComm, 2015, 17, 719-722.	2.6	16
23	Unexpected crystallization of the metastable tubular coordination polymer of cucurbit[6]uril with magnesium ions which spontaneously transforms into a discrete coordination complex. CrystEngComm, 2014, 16, 3699-3702.	2.6	4
24	Kinetic trapping of the host–guest association intermediate and its transformation into a thermodynamic inclusion complex. Chemical Communications, 2013, 49, 1859.	4.1	36
25	Host–guest complexes of cucurbit[6]uril with isoprenaline: the effect of the metal ion on the crystallization pathway and supramolecular architecture. CrystEngComm, 2013, 15, 7414.	2.6	13
26	Solid-State Supramolecular Assemblies of Tryptophan and Tryptamine with Cucurbit[6]Uril. Crystal Growth and Design, 2012, 12, 550-555.	3.0	50
27	Monolayers of an amphiphilic para-carboxy-calix[4] arene act as templates for the crystallization of acetaminophen. Journal of Colloid and Interface Science, 2012, 377, 450-455.	9.4	9
28	Amidophenol-Modified Amphiphilic Calixarenes: Synthesis, Interfacial Self-Assembly, and Acetaminophen Crystal Nucleation Properties. Langmuir, 2011, 27, 9116-9121.	3. 5	9
29	Supramolecular versatility in the solid-state complexes of para-sulphonatocalix[4]arene with phenanthroline. CrystEngComm, 2011, 13, 3265.	2.6	17
30	Conformational isomerism in the solid-state structures of tetracaine and tamoxifen with para-sulphonato-calix[4] arene. Journal of Molecular Structure, 2010, 965, 116-120.	3.6	12
31	Structural Diversity in the Crystalline Complexes of <i>para</i> Bipyridinium Derivatives. Crystal Growth and Design, 2010, 10, 4542-4549.	3.0	19
32	Solid-state interactions of calixarenes with biorelevant molecules. Chemical Communications, 2009, , 5799.	4.1	88
33	A novel structural motif for calix[4]arene dihydrophosphonic acid in its complex with di-methyl ammonium and tetra-methyl ammonium cations. Journal of Molecular Structure, 2008, 891, 404-407.	3.6	4
34	The solid-state structures of para-sulphonatocalix[4] arene with the biologically active oligoammonium cations of norspermidine and triethyltetramine. Journal of Molecular Structure, 2008, 891, 443-449.	3.6	5
35	Solid state structures of the complexes between the antiseptic chlorhexidine and three anionic derivatives of calix[4]arene. CrystEngComm, 2008, 10, 975.	2.6	37
36	Stepped layers in the complexes of para-sulfonatocalix[6]arene with dimethylammonium and bis-6-aminohexylammonium cations. New Journal of Chemistry, 2008, 32, 2116.	2.8	5

3

#	Article	IF	CITATIONS
37	The Solid-State Complex of para-Sulphonato-Calix $[8]$ Arene Anion with Dimethylammonium Cations. The Open Crystallography Journal, 2008, $1, 18-23$.	0.4	10
38	Diastereoselective Lower Rim (1S)-Camphorsulfonylation as the Shortest Way to the Inherently Chiral Calix[4]arene. Organic Letters, 2007, 9, 1183-1185.	4.6	50
39	The Structure of the Tetra-Potassium Salt of Calix[4]Arene Dihydroxyphosphonic Acid. Chemistry Journal of Moldova, 2007, 2, 98-101.	0.6	3
40	Assembly of a novel supramolecular synthon of calix[4] arene presenting four carboxylic acids. Chemical Communications, 2006, , 903.	4.1	19
41	Assembly modes in the solid state structure of the complexes of melamine mono-cations with para-calix[4]arene sulfonic acid and calix[4]arene dihydroxyphosphonic acid. New Journal of Chemistry, 2006, 30, 59-64.	2.8	18
42	A stepped bilayer packing motif for para-sulphonatocalix[4]arene: The solid-state structure of the para-sulphonatocalix[4]arene–triethylamine complex. Journal of Molecular Structure, 2006, 797, 1-4.	3.6	14
43	The solid-state structure of calix[4]arene dihydroxyphosphonic acid–l-lysine complex. Journal of Molecular Structure, 2006, 825, 20-25.	3.6	13
44	Conformational extremes in the supramolecular assemblies of para-sulfonato-calix[8]arene. New Journal of Chemistry, 2006, 30, 987.	2.8	47
45	Calix[4]arenesulfonylamidines. Synthesis, structure and influence on Mg2+, ATP-dependent calcium pumps. Tetrahedron Letters, 2005, 46, 7459-7462.	1.4	22
46	Tetrazolecalix[4]arenes as new ligands for palladium(II). Tetrahedron, 2005, 61, 12282-12287.	1.9	20
47	Head-to-tail self-assembly of a calix[4] arene inclusion polymer controlled by a pendant arm. Chemical Communications, 2005, , 2442.	4.1	17
48	Supramolecular interactions in the heteroarylimine-substituted calix[4] arenes: the formation of cyclic dodecanuclear palladium aggregates. Supramolecular Chemistry, 0, , 1-14.	1.2	0