List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4144821/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trapping precursor-level functionalities in hierarchically porous carbons prepared by a pre-stabilization route for superior supercapacitors. Chinese Chemical Letters, 2023, 34, 107304.	4.8	31
2	High-energy aqueous supercapacitors enabled by N/O codoped carbon nanosheets and "water-in-salt― electrolyte. Chinese Chemical Letters, 2022, 33, 2681-2686.	4.8	50
3	<i>In situ</i> nanoarchitecturing of conjugated polyamide network-derived carbon cathodes toward high energy-power Zn-ion capacitors. Journal of Materials Chemistry A, 2022, 10, 611-621.	5.2	117
4	Unraveling the role of solvent–precursor interaction in fabricating heteroatomic carbon cathode for high-energy-density Zn-ion storage. Journal of Materials Chemistry A, 2022, 10, 9837-9847.	5.2	47
5	Kinetics-driven design of 3D VN/MXene composite structure for superior zinc storage and charge transfer. Journal of Power Sources, 2022, 536, 231512.	4.0	47
6	Spatial Confinement Strategy for Micelle-Size-Mediated Modulation of Mesopores in Hierarchical Porous Carbon Nanosheets with an Efficient Capacitive Response. ACS Applied Materials & Interfaces, 2022, 14, 33328-33339.	4.0	73
7	Thio-groups decorated covalent triazine frameworks for selective mercury removal. Journal of Hazardous Materials, 2021, 403, 123702.	6.5	60
8	Highly N/O co-doped ultramicroporous carbons derived from nonporous metal-organic framework for high performance supercapacitors. Chinese Chemical Letters, 2021, 32, 1491-1496.	4.8	65
9	Boron "gluing―nitrogen heteroatoms in a prepolymerized ionic liquid-based carbon scaffold for durable supercapacitive activity. Journal of Materials Chemistry A, 2021, 9, 2714-2724.	5.2	67
10	Ionic Liquids for Supercapacitive Energy Storage: A Mini-Review. Energy & Fuels, 2021, 35, 8443-8455.	2.5	115
11	Porous carbon globules with moss-like surfaces from semi-biomass interpenetrating polymer network for efficient charge storage. Chinese Chemical Letters, 2021, 32, 3811-3816.	4.8	38
12	Adapting a Kinetics-Enhanced Carbon Nanostructure to Li/Na Hybrid Water-in-Salt Electrolyte for High-Energy Aqueous Supercapacitors. ACS Applied Energy Materials, 2021, 4, 5727-5737.	2.5	57
13	A robust strategy of solvent choice to synthesize optimal nanostructured carbon for efficient energy storage. Carbon, 2021, 180, 135-145.	5.4	88
14	Three-dimensional hierarchical porous carbon derived from resorcinol formaldehyde-zinc tatrate/poly(styrene-maleic anhydride) for high performance supercapacitor electrode. Journal of Alloys and Compounds, 2021, 886, 161176.	2.8	39
15	Facile construction of highly redox active carbons with regular micropores and rod-like morphology towards high-energy supercapacitors. Materials Chemistry Frontiers, 2021, 5, 3061-3072.	3.2	69
16	Selfâ€Assembled Carbon Superstructures Achieving Ultraâ€Stable and Fast Protonâ€Coupled Charge Storage Kinetics. Advanced Materials, 2021, 33, e2104148.	11.1	174
17	Water-in-salt electrolyte ion-matched N/O codoped porous carbons for high-performance supercapacitors. Chinese Chemical Letters, 2020, 31, 579-582.	4.8	39
18	Improving the pore-ion size compatibility between poly(ionic liquid)-derived carbons and high-voltage electrolytes for high energy-power supercapacitors. Chemical Engineering Journal, 2020, 382, 122945.	6.6	81

#	Article	IF	CITATIONS
19	Carbon hydrangeas with typical ionic liquid matched pores for advanced supercapacitors. Carbon, 2020, 168, 499-507.	5.4	110
20	Core-shell hierarchical porous carbon spheres with N/O doping for efficient energy storage. Electrochimica Acta, 2020, 358, 136899.	2.6	90
21	Recent advances in carbon-based supercapacitors. Materials Advances, 2020, 1, 945-966.	2.6	207
22	Highly active N, O-doped hierarchical porous carbons for high-energy supercapacitors. Chinese Chemical Letters, 2020, 31, 1226-1230.	4.8	78
23	A universal strategy to obtain highly redox-active porous carbons for efficient energy storage. Journal of Materials Chemistry A, 2020, 8, 3717-3725.	5.2	79
24	Hydrangea-like N/O codoped porous carbons for high-energy supercapacitors. Chemical Engineering Journal, 2020, 388, 124208.	6.6	75
25	Deep-eutectic-solvent synthesis of N/O self-doped hollow carbon nanorods for efficient energy storage. Chemical Communications, 2019, 55, 11219-11222.	2.2	101
26	Synergistic design of aÂN, O co-doped honeycomb carbon electrode and an ionogel electrolyte enabling all-solid-state supercapacitors with an ultrahigh energy density. Journal of Materials Chemistry A, 2019, 7, 816-826.	5.2	134
27	Ultrahigh energy density of aÂN, O codoped carbon nanosphere based all-solid-state symmetric supercapacitor. Journal of Materials Chemistry A, 2019, 7, 1177-1186.	5.2	188
28	Ternary-doped carbon electrodes for advanced aqueous solid-state supercapacitors based on a "water-in-salt―gel electrolyte. Journal of Materials Chemistry A, 2019, 7, 15801-15811.	5.2	130
29	High-energy flexible solid-state supercapacitors based on O, N, S-tridoped carbon electrodes and a 3.5â€V gel-type electrolyte. Chemical Engineering Journal, 2019, 372, 1216-1225.	6.6	103
30	Template-Free, Self-Doped Approach to Porous Carbon Spheres with High N/O Contents for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 7024-7034.	3.2	147
31	From interpenetrating polymer networks to hierarchical porous carbons for advanced supercapacitor electrodes. Chinese Chemical Letters, 2019, 30, 1445-1449.	4.8	58
32	Nanocarbonâ€Based Materials for Flexible Allâ€Solidâ€State Supercapacitors. Advanced Materials, 2018, 30, e1705489.	11.1	330
33	Ultramicroporous carbon nanoparticles derived from metal–organic framework nanoparticles for high-performance supercapacitors. Materials Chemistry and Physics, 2018, 211, 234-241.	2.0	68
34	Cooking carbon with protic salt: Nitrogen and sulfur self-doped porous carbon nanosheets for supercapacitors. Chemical Engineering Journal, 2018, 347, 233-242.	6.6	160
35	N, S Co-doped hierarchical porous carbon rods derived from protic salt: Facile synthesis for high energy density supercapacitors. Electrochimica Acta, 2018, 274, 378-388.	2.6	105
36	Nitrogen-Enriched Hollow Porous Carbon Nanospheres with Tailored Morphology and Microstructure for All-Solid-State Symmetric Supercapacitors. ACS Applied Energy Materials, 2018, 1, 4293-4303.	2.5	72

#	Article	IF	CITATIONS
37	Schiff-Base/Resin Copolymer under Hypersaline Condition to High-Level N-Doped Porous Carbon Nanosheets for Supercapacitors. ACS Applied Nano Materials, 2018, 1, 4998-5007.	2.4	63
38	A general strategy to synthesize high-level N-doped porous carbons <i>via</i> Schiff-base chemistry for supercapacitors. Journal of Materials Chemistry A, 2018, 6, 12334-12343.	5.2	130
39	Poly(ionic liquid)-derived, N, S-codoped ultramicroporous carbon nanoparticles for supercapacitors. Chemical Engineering Journal, 2017, 317, 651-659.	6.6	140
40	Design of carbon materials with ultramicro-, supermicro- and mesopores using solvent- and self-template strategy for supercapacitors. Microporous and Mesoporous Materials, 2017, 253, 1-9.	2.2	91
41	Core–shell reduced graphene oxide/MnO @carbon hollow nanospheres for high performance supercapacitor electrodes. Chemical Engineering Journal, 2017, 313, 518-526.	6.6	137
42	Nitrogen-doped porous carbons with nanofiber-like structure derived from poly (aniline-co-p-phenylenediamine) for supercapacitors. Electrochimica Acta, 2017, 224, 17-24.	2.6	79
43	A novel synthesis of hierarchical porous carbons from interpenetrating polymer networks for high performance supercapacitor electrodes. Carbon, 2017, 111, 667-674.	5.4	165
44	Encapsulation of NiO nanoparticles in mesoporous carbon nanospheres for advanced energy storage. Chemical Engineering Journal, 2017, 308, 240-247.	6.6	163
45	Nitrogen-containing ultramicroporous carbon nanospheres for high performance supercapacitor electrodes. Electrochimica Acta, 2016, 205, 132-141.	2.6	130
46	Nitrogen-containing carbon microspheres for supercapacitor electrodes. Electrochimica Acta, 2015, 158, 166-174.	2.6	145
47	Template-Engaged In Situ Synthesis of Carbon-Doped Monoclinic Mesoporous BiVO4: Photocatalytic Treatment of Rhodamine B. Journal of Materials Engineering and Performance, 2015, 24, 2359-2367.	1.2	5
48	Core–shell ultramicroporous@microporous carbon nanospheres as advanced supercapacitor electrodes. Journal of Materials Chemistry A, 2015, 3, 11517-11526.	5.2	163
49	Facile synthesis of mesoporous cobalt oxide rugby balls for electrochemical energy storage. New Journal of Chemistry, 2015, 39, 68-71.	1.4	12
50	Mesoporous size controllable carbon microspheres and their electrochemical performances for supercapacitor electrodes. Journal of Materials Chemistry A, 2014, 2, 8407-8415.	5.2	161
51	A facile synthesis of a novel mesoporous Ge@C sphere anode with stable and high capacity for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 17107-17114.	5.2	180
52	Tuned surface area and mesopore diameter of ordered mesoporous carbon: ultrahigh decontamination of di(2-ethylhexyl)phthalate. RSC Advances, 2014, 4, 23853-23860.	1.7	8
53	Graphitized carbon from wastepaper as electrodes for high-performance electric double-layer capacitors. Journal of Solid State Electrochemistry, 2014, 18, 2481-2486.	1.2	2
54	Development of MnO ₂ /porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes. Journal of Materials Chemistry A, 2014, 2, 2555-2562.	5.2	292

#	Article	IF	CITATIONS
55	One-pot assembly of silica@two polymeric shells for synthesis of hollow carbon porous nanospheres: Adsorption of bisphenol A. Materials Letters, 2014, 120, 108-110.	1.3	20
56	The structural optimization and high electrochemical behavior of porous carbons by graphitization in molten sodium metals. Electrochimica Acta, 2014, 117, 486-491.	2.6	8
57	Enlargement of uniform micropores in hierarchically ordered micro–mesoporous carbon for high level decontamination of bisphenol A. Journal of Materials Chemistry A, 2014, 2, 8534.	5.2	73
58	High surface area ordered mesoporous carbon for high-level removal of rhodamine B. Journal of Materials Science, 2013, 48, 8003-8013.	1.7	31
59	Synthesis of micro- and mesoporous carbon spheres for supercapacitor electrode. Journal of Solid State Electrochemistry, 2013, 17, 2293-2301.	1.2	98
60	A low-temperature single-source route to an efficient broad-band cerium(iii) photocatalyst using a bimetallic polyoxotitanium cage. RSC Advances, 2013, 3, 13659.	1.7	27
61	A seeded synthetic strategy for uniform polymer and carbon nanospheres with tunable sizes for high performance electrochemical energy storage. Chemical Communications, 2013, 49, 3043.	2.2	58
62	Self-Assembly of CdTe Nanocrystals into Two-Dimensional Nanoarchitectures at the Airâ^'Liquid Interface Induced by Gemini Surfactant of 1,3-Bis(hexadecyldimethylammonium) Propane Dibromide. Journal of Physical Chemistry C, 2008, 112, 6689-6694.	1.5	14
63	Preparation and characterization of silica-titania aerogel-like balls by ambient pressure drying. Journal of Sol-Gel Science and Technology, 2007, 41, 203-207.	1.1	19
64	Synthesis of Alumina Aerogels by Ambient Drying Method and Control of Their Structures. Journal of Porous Materials, 2005, 12, 317-321.	1.3	26