
James V Moroney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4144663/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial carbonic anhydrases are needed for optimal photosynthesis at low CO2 levels in <i>Chlamydomonas</i> . Plant Physiology, 2021, 187, 1387-1398.	2.3	16
2	Identification and Characterization of a Transient Receptor Potential Ion Channel (TRP2) Involved in Acclimation to Low CO2 Conditions in Chlamydomonas reinhardtii. Plant Molecular Biology Reporter, 2020, 38, 503-512.	1.0	3
3	How protein - protein interactions contribute to pyrenoid formation in Chlamydomonas. Journal of Experimental Botany, 2019, 70, 5033-5035.	2.4	2
4	Thylakoid localized bestrophin-like proteins are essential for the CO ₂ concentrating mechanism of <i>Chlamydomonas reinhardtii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16915-16920.	3.3	83
5	The many types of carbonic anhydrases in photosynthetic organisms. Plant Science, 2018, 268, 11-17.	1.7	112
6	Closing the circle. ELife, 2018, 7, .	2.8	3
7	A model for the ergosterol biosynthetic pathway in <i>Chlamydomonas reinhardtii</i> . European Journal of Phycology, 2017, 52, 64-74.	0.9	21
8	A robust protocol for efficient generation, and genomic characterization of insertional mutants of Chlamydomonas reinhardtii. Plant Methods, 2017, 13, 22.	1.9	18
9	Plant Carbonic Anhydrases: Structures, Locations, Evolution, and Physiological Roles. Molecular Plant, 2017, 10, 30-46.	3.9	174
10	Identification and characterization of a solute carrier, CIA8, involved in inorganic carbon acclimation in Chlamydomonas reinhardtii. Journal of Experimental Botany, 2017, 68, 3879-3890.	2.4	26
11	The Cytoplasmic Carbonic Anhydrases <i>î²</i> CA2 and <i>î²</i> CA4 Are Required for Optimal Plant Growth at Low CO ₂ . Plant Physiology, 2016, 171, 280-293.	2.3	80
12	Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proceedings of the United States of America, 2015, 112, 8529-8536.	3.3	751
13	The carbon concentrating mechanism in Chlamydomonas reinhardtii: finding the missing pieces. Photosynthesis Research, 2014, 121, 159-173.	1.6	39
14	CCM8: The Eighth International Symposium on Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms. Photosynthesis Research, 2014, 121, 107-110.	1.6	3
15	Carbon allocation and element composition in four Chlamydomonas mutants defective in genes related to the CO2 concentrating mechanism. Photosynthesis Research, 2014, 121, 201-211.	1.6	10
16	Photorespiration and carbon concentrating mechanisms: two adaptations to high O2, low CO2 conditions. Photosynthesis Research, 2013, 117, 121-131.	1.6	67
17	The Periplasmic Carbonic Anhydrase, CAH1, is Absent in the Sequenced Chlamydomonas Reinhardtii Strain, CC-503. Advanced Topics in Science and Technology in China, 2013, , 311-314.	0.0	2
18	Transcriptional Analysis of the Three Phosphoglycolate Phosphatase Genes in Wild Type and the pgp1 Mutant of Chlamydomonas Reinhardtii. Advanced Topics in Science and Technology in China, 2013, , 315-318.	0.0	3

JAMES V MORONEY

#	Article	IF	CITATIONS
19	The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles. Photosynthesis Research, 2011, 109, 133-149.	1.6	188
20	ldentification of a Novel Gene, <i>CIA6</i> , Required for Normal Pyrenoid Formation in <i>Chlamydomonas reinhardtii</i> Â Â Â Â. Plant Physiology, 2011, 156, 884-896.	2.3	54
21	Functional Characterization of the Chlamydomonas reinhardtii ERG3 Ortholog, a Gene Involved in the Biosynthesis of Ergosterol. PLoS ONE, 2010, 5, e8659.	1.1	29
22	Expression of a Low CO2–Inducible Protein, LCI1, Increases Inorganic Carbon Uptake in the Green Alga <i>Chlamydomonas reinhardtii</i> Â Â. Plant Cell, 2010, 22, 3105-3117.	3.1	83
23	Identification and characterization of two closely related βâ€carbonic anhydrases from <i>Chlamydomonas reinhardtii</i> . Physiologia Plantarum, 2008, 133, 15-26.	2.6	58
24	Identification of Two Genes, sll0804 and slr1306, as Putative Components of the CO ₂ -Concentrating Mechanism in the Cyanobacterium <i>Synechocystis</i> sp. Strain PCC 6803. Journal of Bacteriology, 2008, 190, 8234-8237.	1.0	4
25	Identification and characterisation of a novel inorganic carbon acquisition gene, CIA7, from an insertional mutant of Chlamydomonas reinhardtii. Functional Plant Biology, 2008, 35, 373.	1.1	3
26	Proposed Carbon Dioxide Concentrating Mechanism in Chlamydomonas reinhardtii. Eukaryotic Cell, 2007, 6, 1251-1259.	3.4	232
27	The <i>Chlamydomonas</i> Genome Reveals the Evolution of Key Animal and Plant Functions. Science, 2007, 318, 245-250.	6.0	2,354
28	A rapid method for chloroplast isolation from the green alga Chlamydomonas reinhardtii. Nature Protocols, 2006, 1, 2227-2230.	5.5	44
29	A mutant of Chlamydomonas reinhardtii that cannot acclimate to low CO2 conditions has an insertion in the Hdh1 gene. Functional Plant Biology, 2005, 32, 55.	1.1	4
30	Regulation of the expression of photorespiratory genes inChlamydomonas reinhardtii. Canadian Journal of Botany, 2005, 83, 810-819.	1.2	17
31	The carbonic anhydrase gene families of Chlamydomonas reinhardtii. Canadian Journal of Botany, 2005, 83, 780-795.	1.2	64
32	Identification of a New Chloroplast Carbonic Anhydrase in Chlamydomonas reinhardtii. Plant Physiology, 2004, 135, 173-182.	2.3	101
33	The Malic Enzyme Is Required for Optimal Photoautotrophic Growth of Synechocystis sp. Strain PCC 6803 under Continuous Light but Not under a Diurnal Light Regimen. Journal of Bacteriology, 2004, 186, 8144-8148.	1.0	32
34	The Chlamydomonas reinhardtii proteins Ccp1 and Ccp2 are required for long-term growth, but are not necessary for efficient photosynthesis, in a low-CO2 environment. Plant Molecular Biology, 2004, 56, 125-132.	2.0	61
35	Membrane lipid biosynthesis in Chlamydomonas reinhardtii: ethanolaminephosphotransferase is capable of synthesizing both phosphatidylcholine and phosphatidylethanolamine. Archives of Biochemistry and Biophysics, 2004, 430, 198-209.	1.4	27
36	Rubisco Activase Is Required for Optimal Photosynthesis in the Green Alga Chlamydomonas reinhardtii in a Low-CO2 Atmosphere. Plant Physiology, 2003, 133, 1854-1861.	2.3	86

JAMES V MORONEY

#	Article	IF	CITATIONS
37	Use of the bleomycin resistance gene to generate tagged insertional mutants of Chlamydomonas reinhardtii that require elevated CO2 for optimal growth. Functional Plant Biology, 2002, 29, 231.	1.1	22
38	CARBON CONCENTRATING MECHANISMS IN AQUATIC PHOTOSYNTHETIC ORGANISMS: A REPORT ON CCM 2001. Journal of Phycology, 2001, 37, 928-931.	1.0	8
39	As Chlamydomonas reinhardtii acclimates to low-CO2 conditions there is an increase in cyclophilin expression. , 1999, 40, 1055-1062.		18
40	How Do Algae Concentrate CO2 to Increase the Efficiency of Photosynthetic Carbon Fixation?1. Plant Physiology, 1999, 119, 9-16.	2.3	191
41	The Intracellular Localization of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase in Chlamydomonas reinhardtii1. Plant Physiology, 1998, 116, 1585-1591.	2.3	116
42	<i>Chlamydomonas reinhardtii </i> cDNAs upregulated in low-CO ₂ conditions: expression and analyses. Canadian Journal of Botany, 1998, 76, 1003-1009.	1.2	13
43	The role of the chloroplast in inorganic carbon uptake by eukaryotic algae. Canadian Journal of Botany, 1998, 76, 1025-1034.	1.2	29
44	Measurement of Carbonic Anhydrase Activity Using a Sensitive Fluorometric Assay. Analytical Biochemistry, 1997, 252, 190-197.	1.1	15
45	Isolation of cDNA clones of genes induced upon transfer of Chlamydomonas reinhardtii cells to low CO2. Plant Molecular Biology, 1996, 31, 443-448.	2.0	62
46	Chlamydomonas reinhardtii mutants without ribulose-1,5-bisphosphate carboxylase-oxygenase lack a detectable pyrenoid. Planta, 1996, 198, 263.	1.6	50
47	Growth and Osmotic Adjustment of Cultured Suspension Cells fromAlternanthera philoxeroides(Mart.) Griseb After an Abrupt Increase in Salinity. Journal of Experimental Botany, 1993, 44, 673-679.	2.4	12
48	Simplified Procedure for the Isolation of Intact Chloroplasts from Chlamydomonas reinhardtii. Plant Physiology, 1991, 97, 1576-1580.	2.3	30
49	The role of the chloroplast in inorganic carbon acquisition by Chlamydomonas reinhardtii. Canadian Journal of Botany, 1991, 69, 1017-1024.	1.2	46
50	A New Chloroplast Protein Is Induced by Growth on Low CO2 in Chlamydomonas reinhardtii. Plant Physiology, 1990, 93, 833-836.	2.3	24
51	Identification of Intracellular Carbonic Anhydrase in Chlamydomonas reinhardtii which Is Distinct from the Periplasmic Form of the Enzyme. Plant Physiology, 1989, 89, 904-909.	2.3	61
52	lsolation and Characterization of a Mutant of <i>Chlamydomonas reinhardtii</i> Deficient in the CO ₂ Concentrating Mechanism. Plant Physiology, 1989, 89, 897-903.	2.3	111
53	Inorganic Carbon Accumulation by Chlamydomonas reinhardtii. Plant Physiology, 1988, 88, 491-496.	2.3	65
54	Evidence for Inorganic Carbon Transport by Intact Chloroplasts of Chlamydomonas reinhardtii. Plant Physiology, 1987, 83, 460-463.	2.3	105

JAMES V MORONEY

#	Article	IF	CITATIONS
55	Evidence That an Internal Carbonic Anhydrase Is Present in 5% CO2-Grown and Air-Grown Chlamydomonas. Plant Physiology, 1987, 84, 757-761.	2.3	43
56	Complementation analysis of the inorganic carbon concentrating mechanism of Chlamydomonas reinhardtii. Molecular Genetics and Genomics, 1986, 204, 199-203.	2.4	53
57	Clycolate Metabolism and Excretion by <i>Chlamydomonas reinhardtii</i> . Plant Physiology, 1986, 82, 821-826.	2.3	61
58	Effect of Carbonic Anhydrase Inhibitors on Inorganic Carbon Accumulation by <i>Chlamydomonas reinhardtii</i> . Plant Physiology, 1985, 79, 177-183.	2.3	267
59	Inorganic Carbon Uptake by <i>Chlamydomonas reinhardtii</i> . Plant Physiology, 1985, 77, 253-258.	2.3	93
60	The Mr -value of chloroplast coupling factor 1. FEBS Letters, 1983, 158, 58-62.	1.3	131
61	Endogenous fluorescence of coupling factor 1 from spinach chloroplasts. Archives of Biochemistry and Biophysics, 1982, 214, 668-674.	1.4	19
62	The distance between thiol groups in the ? subunit of coupling factor 1 influences the proton permeability of thylakoid membranes. Journal of Bioenergetics and Biomembranes, 1982, 14, 347-359.	1.0	27