Michael S Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4144557/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gold boosts nitrate reduction and deactivation resistance to indium-promoted palladium catalysts. Applied Catalysis B: Environmental, 2022, 305, 121048.	20.2	29
2	A Simple and Rapid Method of Forming Double‣ided TiO ₂ Nanotube Arrays. ChemElectroChem, 2022, 9, .	3.4	3
3	Thermal annealing effects on palladium-decorated gold nanoparticle catalysts. Journal of Catalysis, 2022, 410, 246-255.	6.2	4
4	Mechanistic Insight into the Photo-Oxidation of Perfluorocarboxylic Acid over Boron Nitride. Environmental Science & Technology, 2022, 56, 8942-8952.	10.0	13
5	Titanium oxide improves boron nitride photocatalytic degradation of perfluorooctanoic acid. Chemical Engineering Journal, 2022, 448, 137735.	12.7	35
6	Nano-structural effects on Hematite (α-Fe2O3) nanoparticle radiofrequency heating. Nano Convergence, 2021, 8, 8.	12.1	20
7	Destruction of Per- and Polyfluoroalkyl Substances using UVC and Boron Nitride. , 2021, , .		2
8	Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nature Communications, 2021, 12, 2870.	12.8	605
9	Heavy oil viscosity reduction at mild temperatures using palladium acetylacetonate. Fuel, 2021, 294, 120546.	6.4	9
10	Memory Seeds Enable High Structural Phase Purity in 2D Perovskite Films for Highâ€Efficiency Devices. Advanced Materials, 2021, 33, e2007176.	21.0	50
11	Unified Metallic Catalyst Aging Strategy and Implications for Water Treatment. Environmental Science & Technology, 2021, 55, 11284-11293.	10.0	3
12	Superparamagnetic nanoadsorbents for the removal of trace As(III) in drinking water. Environmental Advances, 2021, 4, 100046.	4.8	9
13	Catalytic Capacitive Deionization for Adsorption and Reduction of Aqueous Nitrate. ACS ES&T Water, 2021, 1, 2233-2241.	4.6	9
14	Utilizing the broad electromagnetic spectrum and unique nanoscale properties for chemical-free water treatment. Current Opinion in Chemical Engineering, 2021, 33, 100709.	7.8	3
15	Adsorption and Reductive Defluorination of Perfluorooctanoic Acid over Palladium Nanoparticles. Environmental Science & Technology, 2021, 55, 14836-14843.	10.0	26
16	JP-8 Desulfurization by CuNa-Y Zeolite at Elevated Temperatures Has Two Distinct Stages: Chemisorption Followed by Surface Reactions. Industrial & Engineering Chemistry Research, 2021, 60, 14534-14546.	3.7	2
17	Hydrodefluorination of Perfluorooctanoic Acid in the H ₂ -Based Membrane Catalyst-Film Reactor with Platinum Group Metal Nanoparticles: Pathways and Optimal Conditions. Environmental Science & Technology, 2021, 55, 16699-16707.	10.0	13
18	PdAu-catalyzed oxidation through in situ generated H2O2 in simulated produced water. Catalysis Today, 2020, 339, 362-370.	4.4	10

#	Article	IF	CITATIONS
19	Toward glucuronic acid through oxidation of methyl-glucoside using PdAu catalysts. Catalysis Communications, 2020, 135, 105895.	3.3	2
20	Mechanistic Insights into pH-Controlled Nitrite Reduction to Ammonia and Hydrazine over Rhodium. ACS Catalysis, 2020, 10, 494-509.	11.2	81
21	Discerning the Relevance of Superoxide in PFOA Degradation. Environmental Science and Technology Letters, 2020, 7, 653-658.	8.7	36
22	Monitoring, assessment, and prediction of microbial shifts in coupled catalysis and biodegradation of 1,4-dioxane and co-contaminants. Water Research, 2020, 173, 115540.	11.3	37
23	Magnetically recoverable carbon-coated iron carbide with arsenic adsorptive removal properties. SN Applied Sciences, 2020, 2, 1.	2.9	6
24	Magnetic In–Pd catalysts for nitrate degradation. Environmental Science: Nano, 2020, 7, 2681-2690.	4.3	8
25	Room-Temperature Catalytic Treatment of High-Salinity Produced Water at Neutral pH. Industrial & Engineering Chemistry Research, 2020, 59, 10356-10363.	3.7	2
26	Understanding the role of iron (III) tosylate on heavy oil viscosity reduction. Fuel, 2020, 274, 117808.	6.4	7
27	Efficient Photocatalytic PFOA Degradation over Boron Nitride. Environmental Science and Technology Letters, 2020, 7, 613-619.	8.7	89
28	Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater – a perspective. Environmental Science: Nano, 2020, 7, 2178-2194.	4.3	74
29	Disparities between experimental and environmental conditions: Research steps toward making electrochemical water treatment a reality. Current Opinion in Electrochemistry, 2020, 22, 9-16.	4.8	108
30	Acid-catalyzed pyrolytic synthesis of levoglucosan through salt-mediated ring locking. Green Chemistry, 2020, 22, 1968-1977.	9.0	4
31	Fighting PFAS with PFAS. ACS Central Science, 2020, 6, 453-455.	11.3	10
32	Magnetic nanoparticle recovery device (MagNERD) enables application of iron oxide nanoparticles for water treatment. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	39
33	Fit-for-purpose treatment goals for produced waters in shale oil and gas fields. Water Research, 2020, 173, 115467.	11.3	71
34	In Situ Electrochemical Generation of Reactive Chlorine Species for Efficient Ultrafiltration Membrane Self-Cleaning. Environmental Science & Technology, 2020, 54, 6997-7007.	10.0	84
35	Indium-decorated Pd nanocubes degrade nitrate anions rapidly. Applied Catalysis B: Environmental, 2020, 276, 119048.	20.2	26
36	Superparamagnetic MOF@GO Ni and Co based hybrid nanocomposites as efficient water pollutant adsorbents. Science of the Total Environment, 2020, 738, 139213.	8.0	35

#	Article	IF	CITATIONS
37	Hydrogen-generating behavior of Pd-decorated gold nanoparticles via formic acid decomposition. Catalysis Today, 2019, 330, 24-31.	4.4	18
38	Design of a Pd–Au Nitrite Reduction Catalyst by Identifying and Optimizing Active Ensembles. ACS Catalysis, 2019, 9, 7957-7966.	11.2	160
39	Effectiveness of metal oxide catalysts for the degradation of 1,4-dioxane. RSC Advances, 2019, 9, 27042-27049.	3.6	7
40	Bottom-up biofilm eradication using bacteriophage-loaded magnetic nanocomposites: a computational and experimental study. Environmental Science: Nano, 2019, 6, 3539-3550.	4.3	19
41	Adsorptive Desulfurization of Liquid Fuels at Elevated Temperatures Using Metal Exchanged Zeolite Y. Industrial & Engineering Chemistry Research, 2019, 58, 19623-19632.	3.7	11
42	Microencapsulated Photoluminescent Gold for ppb-Level Chromium(VI) Sensing. ACS Applied Materials & Interfaces, 2019, 11, 17491-17500.	8.0	16
43	Highly Defective UiO-66 Materials for the Adsorptive Removal of Perfluorooctanesulfonate. ACS Sustainable Chemistry and Engineering, 2019, 7, 6619-6628.	6.7	130
44	<i>In situ</i> remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. Environmental Science: Nano, 2019, 6, 1283-1302.	4.3	65
45	Catalytic Converters for Water Treatment. Accounts of Chemical Research, 2019, 52, 906-915.	15.6	111
46	Insights into Nitrate Reduction over Indium-Decorated Palladium Nanoparticle Catalysts. ACS Catalysis, 2018, 8, 503-515.	11.2	188
47	Microbial responses to combined oxidation and catalysis treatment of 1,4-dioxane and co-contaminants in groundwater and soil. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	6.0	12
48	Treating Water by Degrading Oxyanions Using Metallic Nanostructures. ACS Sustainable Chemistry and Engineering, 2018, 6, 11160-11175.	6.7	56
49	Low risk posed by engineered and incidental nanoparticles in drinking water. Nature Nanotechnology, 2018, 13, 661-669.	31.5	118
50	Nature of Catalytically Active Sites in the Supported WO ₃ /ZrO ₂ Solid Acid System: A Current Perspective. ACS Catalysis, 2017, 7, 2181-2198.	11.2	77
51	High activity and regenerability of a palladium–gold catalyst for chloroform degradation. Journal of Chemical Technology and Biotechnology, 2016, 91, 2590-2596.	3.2	9
52	Gold-doping of carbon-supported palladium improves reduction catalysis. Chinese Journal of Catalysis, 2016, 37, 1776-1786.	14.0	3
53	Ring-locking enables selective anhydrosugar synthesis from carbohydrate pyrolysis. Green Chemistry, 2016, 18, 5438-5447.	9.0	29
54	Improved CO ₂ Absorption in a Gas–Liquid Countercurrent Column Using a Ceramic Foam Contactor. Industrial & Engineering Chemistry Research, 2016, 55, 1387-1400.	3.7	13

#	Article	IF	CITATIONS
55	Two distinctive energy migration pathways of monolayer molecules on metal nanoparticle surfaces. Nature Communications, 2016, 7, 10749.	12.8	18
56	Improving gold catalysis of nitroarene reduction with surface Pd. Catalysis Today, 2016, 264, 31-36.	4.4	23
57	Facile Graphene Oxide Preparation by Microwave-Assisted Acid Method. Journal of the Brazilian Chemical Society, 2015, , .	0.6	18
58	EXAFS Characterization of Palladium-on-Gold Catalysts Before and After Glycerol Oxidation. Topics in Catalysis, 2015, 58, 302-313.	2.8	17
59	Using Nonionic Surfactants for Production of Semiconductor-Type Carbon Nanotubes by Gel-Based Affinity Chromatography. Nanomaterials and Nanotechnology, 2014, 4, 19.	3.0	7
60	Surface modification of carbon black nanoparticles by dodecylamine: Thermal stability and phase transfer in brine medium. Carbon, 2014, 72, 287-295.	10.3	64
61	Polymerâ€coated nanoparticles for enhanced oil recovery. Journal of Applied Polymer Science, 2014, 131,	2.6	297
62	Salt- and temperature-stable quantum dot nanoparticles for porous media flow. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 492-500.	4.7	23
63	Volcano-shape glycerol oxidation activity of palladium-decorated gold nanoparticles. Chemical Science, 2014, 5, 3715-3728.	7.4	64
64	Synergistic Gold–Bismuth Catalysis for Non-Mercury Hydrochlorination of Acetylene to Vinyl Chloride Monomer. ACS Catalysis, 2014, 4, 3112-3116.	11.2	109
65	Carbon-Based Nanoreporters Designed for Subsurface Hydrogen Sulfide Detection. ACS Applied Materials & Interfaces, 2014, 6, 7652-7658.	8.0	26
66	Supporting palladium metal on gold nanoparticles improves its catalysis for nitrite reduction. Nanoscale, 2014, 6, 358-364.	5.6	55
67	Photocatalytic Hydrodechlorination of Trace Carbon Tetrachloride (CCl4) in Aqueous Medium. Industrial & Engineering Chemistry Research, 2014, 53, 9600-9607.	3.7	4
68	Hydrodechlorination catalysis of Pd-on-Au nanoparticles varies with particle size. Journal of Catalysis, 2013, 298, 206-217.	6.2	60
69	Influence of stripper operating parameters on the performance of amine absorption systems for post-combustion carbon capture: Part II. Vacuum strippers. International Journal of Greenhouse Gas Control, 2013, 16, 351-360.	4.6	16
70	Influence of stripper operating parameters on the performance of amine absorption systems for post-combustion carbon capture: Part I. High pressure strippers. International Journal of Greenhouse Gas Control, 2013, 16, 342-350.	4.6	72
71	Chloroform hydrodechlorination behavior of aluminaâ€supported Pd and PdAu catalysts. AICHE Journal, 2013, 59, 4474-4482.	3.6	30
72	Olefin impurity effect on n-pentane bimolecular isomerization over WOx/ZrO2. Catalysis Communications, 2013, 32, 5-10.	3.3	5

#	Article	IF	CITATIONS
73	Gold nanoparticles for cleaning contaminated water. Journal of Chemical Technology and Biotechnology, 2013, 88, 735-741.	3.2	54
74	Light-Triggered Biocatalysis Using Thermophilic Enzyme–Gold Nanoparticle Complexes. ACS Nano, 2013, 7, 654-663.	14.6	73
75	Degrading perchloroethene at ambient conditions using Pd and Pd-on-Au reduction catalysts. Applied Catalysis B: Environmental, 2013, 140-141, 468-477.	20.2	35
76	Using Catalytic and Surface-Enhanced Raman Spectroscopy-Active Gold Nanoshells to Understand the Role of Basicity in Glycerol Oxidation. ACS Catalysis, 2013, 3, 2430-2435.	11.2	40
77	Porous Silicon as Anode Material for Lithium-Ion Batteries. Springer Series in Materials Science, 2013, , 1-23.	0.6	1
78	Highly stable carbon nanoparticles designed for downhole hydrocarbon detection. Energy and Environmental Science, 2012, 5, 8304.	30.8	42
79	Understanding the Solvent Polarity Effects on Surfactant-Capped Nanoparticles. Journal of Physical Chemistry B, 2012, 116, 13063-13070.	2.6	26
80	Solvothermal Synthesis of Ultrasmall Tungsten Oxide Nanoparticles. Langmuir, 2012, 28, 17771-17777.	3.5	51
81	Inexpensive method for producing macroporous silicon particulates (MPSPs) with pyrolyzed polyacrylonitrile for lithium ion batteries. Scientific Reports, 2012, 2, 795.	3.3	97
82	Molten-droplet synthesis of composite CdSe hollow nanoparticles. Nanotechnology, 2012, 23, 495605.	2.6	10
83	Freestanding Macroporous Silicon and Pyrolyzed Polyacrylonitrile As a Composite Anode for Lithium Ion Batteries. Chemistry of Materials, 2012, 24, 2998-3003.	6.7	110
84	Water-Soluble Nanodiamond. Langmuir, 2012, 28, 5243-5248.	3.5	27
85	Establishing the trichloroethene dechlorination rates of palladium-based catalysts and iron-based reductants. Applied Catalysis B: Environmental, 2012, 125, 95-102.	20.2	40
86	Characteristics of spontaneously formed nanoemulsions in octane/AOT/brine systems. Journal of Colloid and Interface Science, 2012, 385, 111-121.	9.4	15
87	Water-Phase Synthesis of Cationic Silica/Polyamine Nanoparticles. Chemistry of Materials, 2012, 24, 1426-1433.	6.7	11
88	Linker-free quantum dot sensitized TiO2 photoelectrochemical cells. International Journal of Hydrogen Energy, 2012, 37, 6422-6430.	7.1	16
89	Templating CdSe tetrapods at the air/water interface with POPC lipids. Journal of Colloid and Interface Science, 2012, 378, 58-63.	9.4	7
90	Gold-coated porous silicon films as anodes for lithium ion batteries. Journal of Power Sources, 2012, 205, 426-432.	7.8	123

#	Article	IF	CITATIONS
91	Engineered nanoparticles for hydrocarbon detection in oil-field rocks. Energy and Environmental Science, 2011, 4, 505-509.	30.8	72
92	Kinetics Analysis of Palladium/Gold Nanoparticles as Colloidal Hydrodechlorination Catalysts. ACS Catalysis, 2011, 1, 128-138.	11.2	55
93	Self-Assembly and Nanotechnology: Real-Time, Hands-On, and Safe Experiments for K-12 Students. Journal of Chemical Education, 2011, 88, 609-614.	2.3	17
94	Shell Thickness Control of Nanoparticle/Polymer Assembled Microcapsules. Chemistry of Materials, 2011, 23, 301-308.	6.7	35
95	Polyamine–salt aggregate assembly of capsules as responsive drug delivery vehicles. Journal of Materials Chemistry, 2011, 21, 9454.	6.7	71
96	Altering protein surface charge with chemical modification modulates protein–gold nanoparticle aggregation. Journal of Nanoparticle Research, 2011, 13, 625-636.	1.9	29
97	A nanocomplex that is both tumor cell-selective and cancer gene-specific for anaplastic large cell lymphoma. Journal of Nanobiotechnology, 2011, 9, 2.	9.1	72
98	Structural analysis of palladium-decorated gold nanoparticles as colloidal bimetallic catalysts. Catalysis Today, 2011, 160, 96-102.	4.4	57
99	Enhanced performance of hybrid solar cells using longer arms of quantum cadmium selenide tetrapods. Applied Physics Letters, 2011, 99, 223515.	3.3	10
100	Transport Study of Nanoparticles for Oilfield Application. , 2010, , .		30
101	Non-Layer-by-Layer Assembly and Encapsulation Uses of Nanoparticle-Shelled Hollow Spheres. Advances in Polymer Science, 2010, , 89-114.	0.8	5
102	Self-Assembly Synthesis, Tumor Cell Targeting, and Photothermal Capabilities of Antibody-Coated Indocyanine Green Nanocapsules. Journal of the American Chemical Society, 2010, 132, 1929-1938.	13.7	285
103	Relating <i>n</i> -Pentane Isomerization Activity to the Tungsten Surface Density of WO _{<i>x</i>} /ZrO ₂ . Journal of the American Chemical Society, 2010, 132, 13462-13471.	13.7	94
104	Electrolyte Solutions Improve Nanoparticle Transfer from Oil to Water. Journal of Physical Chemistry C, 2010, 114, 19901-19907.	3.1	14
105	Controlled Growth of Sub-10 nm Gold Nanoparticles Using Carbon Monoxide Reductant. Journal of Physical Chemistry C, 2010, 114, 21226-21233.	3.1	20
106	Microfluidic Formation of Ionically Cross-Linked Polyamine Gels. Langmuir, 2010, 26, 6650-6656.	3.5	12
107	CdSe tetrapod synthesis using cetyltrimethylammonium bromide and heat transfer fluids. Journal of Materials Chemistry, 2010, 20, 2474.	6.7	30
108	Three-dimensional liquid surfaces through nanoparticle self-assembly. Soft Matter, 2010, 6, 1533.	2.7	11

#	Article	IF	CITATIONS
109	Performance of CdSe tetrapods-gold as nanostructure electrochemical materials in photovoltaic cells. , 2009, , .		0
110	Tuning the Electronic and Molecular Structures of Catalytic Active Sites with Titania Nanoligands. Journal of the American Chemical Society, 2009, 131, 680-687.	13.7	48
111	Deactivation resistance of Pd/Au nanoparticle catalysts for water-phase hydrodechlorination. Journal of Catalysis, 2009, 267, 97-104.	6.2	93
112	Experimental and modeling analysis of diffusive release from singleâ€shell microcapsules. AICHE Journal, 2009, 55, 2950-2965.	3.6	22
113	Cleaner water using bimetallic nanoparticle catalysts. Journal of Chemical Technology and Biotechnology, 2009, 84, 158-166.	3.2	127
114	Identification of active Zr–WOx clusters on a ZrO2 support for solid acid catalysts. Nature Chemistry, 2009, 1, 722-728.	13.6	150
115	Polyamine-Guided Synthesis of Anisotropic, Multicompartment Microparticles. ACS Applied Materials & Interfaces, 2009, 1, 590-596.	8.0	23
116	Nanoassembled Capsules as Delivery Vehicles for Large Payloads of High Relaxivity Gd3+ Agents. Journal of the American Chemical Society, 2009, 131, 15918-15923.	13.7	39
117	Biodistribution of Encapsulated Indocyanine Green in Healthy Mice. Molecular Pharmaceutics, 2009, 6, 1321-1332.	4.6	96
118	Assembling Colloidal Silica into Porous Hollow Microspheres. Topics in Catalysis, 2008, 49, 251-258.	2.8	15
119	New insights into the nature of the acidic catalytic active sites present in ZrO2-supported tungsten oxide catalysts. Journal of Catalysis, 2008, 256, 108-125.	6.2	200
120	Observing Metal-Catalyzed Chemical Reactions in Situ Using Surface-Enhanced Raman Spectroscopy on Pdâ~'Au Nanoshells. Journal of the American Chemical Society, 2008, 130, 16592-16600.	13.7	185
121	In-vivo fluorescence imaging of mammalian organs using charge-assembled mesocapsule constructs containing indocyanine green. Optics Express, 2008, 16, 20577.	3.4	39
122	Enzyme Encapsulation Using Nanoparticle-Assembled Capsules. ACS Symposium Series, 2008, , 214-232.	0.5	2
123	Stability assessment of indocyanine green within dextran-coated mesocapsules by absorbance spectroscopy. Journal of Biomedical Optics, 2007, 12, 064031.	2.6	47
124	Self-Assembled Multilayers of Nanocomponents. Nano Letters, 2007, 7, 484-489.	9.1	111
125	Synthesis of Near-Infrared-Absorbing Nanoparticle-Assembled Capsules. Chemistry of Materials, 2007, 19, 1277-1284.	6.7	119
126	Breakdown of the Continuum Stokesâ ´'Einstein Relation for Nanoparticle Diffusion. Nano Letters, 2007, 7, 1276-1281.	9.1	238

#	Article	IF	CITATIONS
127	Improved polymer thin-film wetting behavior through nanoparticle segregation to interfaces. Journal of Physics Condensed Matter, 2007, 19, 356003.	1.8	51
128	Shape-Controlled Synthesis of CdSe Tetrapods Using Cationic Surfactant Ligands. Small, 2007, 3, 1164-1169.	10.0	96
129	Towards an in vivo biologically inspired nanofactory. Nature Nanotechnology, 2007, 2, 3-7.	31.5	172
130	Laserâ€Induced Heating of Dextranâ€Coated Mesocapsules Containing Indocyanine Green. Biotechnology Progress, 2007, 23, 1431-1440.	2.6	49
131	Synthesis of nanoparticle-assembled tin oxide/polymer microcapsules. Chemical Communications, 2006, , 1097.	4.1	44
132	Nanoparticle-Assembled Capsule Synthesis:Â Formation of Colloidal Polyamineâ^'Salt Intermediates. Journal of Physical Chemistry B, 2006, 110, 25619-25627.	2.6	70
133	Manganese(II) Oxide Nanohexapods:  Insight into Controlling the Form of Nanocrystals. Chemistry of Materials, 2006, 18, 1821-1829.	6.7	88
134	Improved Pd-on-Au bimetallic nanoparticle catalysts for aqueous-phase trichloroethene hydrodechlorination. Applied Catalysis B: Environmental, 2006, 69, 115-125.	20.2	258
135	Synchronous fluorescence spectroscopic characterization of DMBA-TPA-induced squamous cell carcinoma in mice. Journal of Biomedical Optics, 2006, 11, 014012.	2.6	15
136	Supported Metal Oxides and the Surface Density Metric. , 2006, , 251-281.		3
137	Synthesis of high-quality CdSe nanocrystals in heat transfer fluids. , 2005, , .		3
138	The use of heat transfer fluids in the synthesis of high-quality CdSe quantum dots, core/shell quantum dots, and quantum rods. Nanotechnology, 2005, 16, 2000-2011.	2.6	91
139	Nanoparticle Self-Assembly of Hierarchically Ordered Microcapsule Structures. Advanced Materials, 2005, 17, 1145-1150.	21.0	141
140	Autofluorescence characterization for the early diagnosis of neoplastic changes in DMBA/TPA-induced mouse skin carcinogenesis. Lasers in Surgery and Medicine, 2005, 37, 382-395.	2.1	33
141	Destroying Gadofullerene Aggregates by Salt Addition in Aqueous Solution of Gd@C60(OH)xand Gd@C60[C(COOH2)]10. Journal of the American Chemical Society, 2005, 127, 9368-9369.	13.7	119
142	Photothermal and photochemical effects of laser light absorption by indocyanine green (ICG). , 2005, ,		5
143	Designing Pd-on-Au Bimetallic Nanoparticle Catalysts for Trichloroethene Hydrodechlorination. Environmental Science & Technology, 2005, 39, 1346-1353.	10.0	363
144	SURFACTANT-TEMPLATED MESOSTRUCTURED MATERIALS: SYNTHESIS AND COMPOSITIONAL CONTROL. Series on Chemical Engineering, 2004, , 125-164.	0.2	1

#	Article	IF	CITATIONS
145	Nanoscale Aggregation Properties of Neuroprotective Carboxyfullerene (C3) in Aqueous Solution. Nano Letters, 2004, 4, 1759-1762.	9.1	42
146	Charge-Driven Flocculation of Poly(I-lysine)Gold Nanoparticle Assemblies Leading to Hollow Microspheres. Journal of the American Chemical Society, 2004, 126, 5292-5299.	13.7	117
147	Spontaneous Formation of Nanoparticle Vesicles from Homopolymer Polyelectrolytes. Journal of the American Chemical Society, 2003, 125, 8285-8289.	13.7	131
148	Microcavity Lasing from Block Peptide Hierarchically Assembled Quantum Dot Spherical Resonators. Nano Letters, 2003, 3, 907-911.	9.1	65
149	Assembly of Nanoparticles into Hollow Spheres Using Block Copolypeptides. Nano Letters, 2002, 2, 583-587.	9.1	293
150	Supramolecular-Templated Synthesis of Nanoporous Zirconiaâ^'Silica Catalysts. Chemistry of Materials, 2002, 14, 1961-1973.	6.7	68
151	Supramolecular Templating of Thermally Stable Crystalline Mesoporous Metal Oxides Using Nanoparticulate Precursors. Nano Letters, 2001, 1, 637-642.	9.1	65
152	The Facile Synthesis of Nanocrystalline Semiconductor Quantum Dots. Materials Research Society Symposia Proceedings, 2001, 676, 231.	0.1	6
153	Structural and Reactivity Properties of Nbî—,MCM-41: Comparison with That of Highly Dispersed Nb2O5/SiO2 Catalysts. Journal of Catalysis, 2001, 203, 18-24.	6.2	135
154	Synthesis of amorphous, microporous silica with adamantanamine as a templating agent. Chemical Communications, 2000, , 2057-2058.	4.1	24
155	Synthesis and Applications of Supramolecular-Templated Mesoporous Materials. Angewandte Chemie - International Edition, 1999, 38, 56-77.	13.8	1,941
156	Amphiphilic Templating of Mesostructured Zirconium Oxide. Chemistry of Materials, 1998, 10, 2067-2077.	6.7	177
157	Synthesis and characterization of phosphated mesoporous zirconium oxide. Scripta Materialia, 1997, 9, 165-168.	0.5	67