S Mojtaba Mirabedini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4144396/publications.pdf

Version: 2024-02-01

71 papers

3,301 citations

30 h-index 149623 56 g-index

74 all docs

74 docs citations

times ranked

74

3382 citing authors

#	Article	IF	CITATIONS
1	Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Progress in Organic Coatings, 2009, 65, 222-228.	1.9	392
2	Corrosion performance of epoxy coatings containing silane treated ZrO2 nanoparticles on mild steel in 3.5% NaCl solution. Corrosion Science, 2011, 53, 89-98.	3.0	379
3	Corrosion protection of steel by epoxy nanocomposite coatings containing various combinations of clay and nanoparticulate zirconia. Corrosion Science, 2013, 75, 134-141.	3.0	120
4	Evaluation of corrosion performance of a self-healing epoxy-based coating containing linseed oil-filled microcapsules via electrochemical impedance spectroscopy. Progress in Organic Coatings, 2017, 105, 212-224.	1.9	110
5	PMMA-grafted nanoclay as novel filler for dental adhesives. Dental Materials, 2009, 25, 339-347.	1.6	99
6	The adhesion properties and corrosion performance of differently pretreated epoxy coatings on an aluminium alloy. Corrosion Science, 2010, 52, 1948-1957.	3.0	89
7	Synthesis, characterization and enhanced photocatalytic activity of TiO2/SiO2 nanocomposite in an aqueous solution and acrylic-based coatings. Progress in Organic Coatings, 2011, 72, 453-460.	1.9	88
8	Weathering performance of the polyurethane nanocomposite coatings containing silane treated TiO2 nanoparticles. Applied Surface Science, 2011, 257, 4196-4203.	3.1	83
9	Preparation and characterization of linseed oil-filled urea–formaldehyde microcapsules and their effect on mechanical properties of an epoxy-based coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457, 16-26.	2.3	80
10	Adhesion performance of an epoxy clear coat on aluminum alloy in the presence of vinyl and amino-silane primers. Progress in Organic Coatings, 2006, 57, 307-313.	1.9	79
11	Microwave irradiation of polypropylene surface: a study on wettability and adhesion. International Journal of Adhesion and Adhesives, 2004, 24, 163-170.	1.4	76
12	Effect of TiO2 on the mechanical and adhesion properties of RTV silicone elastomer coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317, 80-86.	2.3	74
13	Preparation and characterization of ethyl cellulose-based core–shell microcapsules containing plant oils. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 394, 74-84.	2.3	73
14	Fluoroalkylsilane treatment of TiO2 nanoparticles in difference pH values: Characterization and mechanism. Advanced Powder Technology, 2012, 23, 428-436.	2.0	72
15	Effect of curing characterization on the corrosion performance of polyester and polyester/epoxy powder coatings. Corrosion Science, 2008, 50, 3280-3286.	3.0	71
16	Effect of low-pressure O2 and Ar plasma treatments on the wettability and morphology of biaxial-oriented polypropylene (BOPP) film. Progress in Organic Coatings, 2007, 60, 105-111.	1.9	69
17	The effect of micro and nano-sized particles on mechanical and adhesion properties of a clear polyester powder coating. Progress in Organic Coatings, 2013, 76, 1625-1632.	1.9	68
18	Surface analysis and anti-graffiti behavior of a weathered polyurethane-based coating embedded with hydrophobic nano silica. Applied Surface Science, 2012, 258, 4391-4396.	3.1	62

#	Article	IF	Citations
19	Effect of silica nanoparticles surface treatment on in situ polymerization of styrene–butyl acrylate latex. Progress in Organic Coatings, 2013, 76, 1016-1023.	1.9	62
20	Improving self-healing performance of polyurethane coatings using PU microcapsules containing bulky-IPDI-BA and nano-clay. Progress in Organic Coatings, 2018, 123, 350-361.	1.9	60
21	Corrosion performance of powder coated aluminium using EIS. Progress in Organic Coatings, 2003, 46, 112-120.	1.9	59
22	Investigating the effect of power/time in the wettability of Ar and O2 gas plasma-treated low-density polyethylene. Progress in Organic Coatings, 2009, 64, 482-488.	1.9	55
23	Preparation and characterization of pre-silane modified ethyl cellulose-based microcapsules containing linseed oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 447, 71-80.	2.3	54
24	Effect of various combinations of zirconia and organoclay nanoparticles on mechanical and thermal properties of an epoxy nanocomposite coating. Composites Part A: Applied Science and Manufacturing, 2012, 43, 2095-2106.	3.8	53
25	Microcapsules containing multi-functional reactive isocyanate-terminated polyurethane prepolymer as a healing agent. Part 1: synthesis and optimization of reaction conditions. Journal of Materials Science, 2016, 51, 3056-3068.	1.7	51
26	Cure characterization of epoxy and polyester clear powder coatings using Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Thermal Analysis (DMTA). Progress in Organic Coatings, 2005, 54, 164-169.	1.9	50
27	Study of silicone coating adhesion to an epoxy undercoat using silane compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302, 11-16.	2.3	49
28	Silane grafting of TiO ₂ nanoparticles: dispersibility and photoactivity in aqueous solutions. Surface and Interface Analysis, 2012, 44, 41-47.	0.8	49
29	Evaluation of the weathering performance of basecoat/clearcoat automotive paint systems by electrochemical properties measurements. Progress in Organic Coatings, 2005, 54, 384-389.	1.9	32
30	Preparation of microcapsules containing multi-functional reactive isocyanate-terminated-polyurethane-prepolymer as healing agent, part II: corrosion performance and mechanical properties of a self healing coating. RSC Advances, 2016, 6, 50874-50886.	1.7	32
31	Development of selfâ€healing coatings based on ureaâ€formaldehyde/polyurethane microcapsules containing epoxy resin. Journal of Applied Polymer Science, 2020, 137, 49663.	1.3	31
32	Preparation of self-healing acrylic latex coatings using novel oil-filled ethyl cellulose microcapsules. Progress in Organic Coatings, 2015, 85, 168-177.	1.9	30
33	Surface Properties of Low Density Polyethylene upon Low-Temperature Plasma Treatment with Various Gases. Plasma Chemistry and Plasma Processing, 2008, 28, 377-390.	1.1	29
34	Application of mixture experimental design to optimize formulation and performance of thermoplastic road markings. Progress in Organic Coatings, 2012, 75, 549-559.	1.9	29
35	Investigating the role of surface treated titanium dioxide nanoparticles on self-cleaning behavior of an acrylic facade coating. Journal of Coatings Technology Research, 2013, 10, 175-187.	1.2	28
36	Mechanical and self-healing properties of a water-based acrylic latex containing linseed oil filled microcapsules: Effect of pre-silanization of microcapsules' shell compound. Composites Part B: Engineering, 2016, 85, 305-314.	5.9	28

#	Article	IF	CITATIONS
37	Surface treatment of TiO2 nanoparticles via sol–gel method: Effect of silane type on hydrophobicity of the nanoparticles. Progress in Organic Coatings, 2015, 87, 36-44.	1.9	27
38	Preparation of Microcapsules Containing Benzoyl Peroxide Initiator with Gelatin-Gum Arabic/Polyurea-Formaldehyde Shell and Evaluating Their Storage Stability. ACS Applied Materials & Interfaces, 2017, 9, 20818-20825.	4.0	27
39	Investigating the antigraffiti properties of a polyurethane clearcoat containing a silicone polyacrylate additive. Journal of Coatings Technology Research, 2011, 8, 497-503.	1.2	26
40	Investigating the surface properties of polyurethane based antiâ€graffiti coatings against UV exposure. Journal of Applied Polymer Science, 2012, 124, 3082-3091.	1.3	26
41	Polyurethane-based microcapsules containing reactive isocyanate compounds: Study on preparation procedure and solvent replacement. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 750-759.	2.3	26
42	Comparison of drag characteristics of self-polishing co-polymers and silicone foul release coatings: A study of wettability and surface roughness. Progress in Organic Coatings, 2006, 57, 421-429.	1.9	25
43	Effect of silane-based treatment on the adhesion strength of acrylic lacquers on the PP surfaces. International Journal of Adhesion and Adhesives, 2007, 27, 519-526.	1.4	24
44	Microencapsulation of quinoline and cerium based inhibitors for smart coating application: Anti-corrosion, morphology and adhesion study. Progress in Organic Coatings, 2019, 137, 105339.	1.9	24
45	APS-silane modification of silica nanoparticles: effect of treatment's variables on the grafting content and colloidal stability of the nanoparticles. Journal of Coatings Technology Research, 2014, 11, 651-660.	1.2	20
46	Photocatalytic activity of water-based acrylic coatings containing fluorosilane treated TiO2 nanoparticles. Progress in Organic Coatings, 2014, 77, 1325-1335.	1.9	19
47	Amino-silane surface modification of urea-formaldehyde microcapsules containing linseed oil for improved epoxy matrix compatibility. Part I: Optimizing silane treatment conditions. Progress in Organic Coatings, 2019, 136, 105242.	1.9	18
48	Photocatalytic activity and colloidal stability of various combinations of TiO2/SiO2 nanocomposites. Journal of Materials Science, 2016, 51, 3219-3230.	1.7	17
49	Enhancing thermoplastic road-marking paints performance using sustainable rosin ester. Progress in Organic Coatings, 2020, 139, 105454.	1.9	16
50	Adhesive strength of powder coated aluminium substrates. International Journal of Adhesion and Adhesives, 2005, 25, 484-494.	1.4	14
51	Curing of poly(furfuryl alcohol) resin catalyzed by a homologous series of dicarboxylic acid catalysts: Kinetics and pot life. Journal of Applied Polymer Science, 2016, 133, .	1.3	13
52	Effect of processing conditions on the microencapsulation of 1-methylimidazole curing agent using solid epoxy resins. Iranian Polymer Journal (English Edition), 2017, 26, 629-637.	1.3	13
53	A novel two-component self-healing coating comprising vinyl ester resin-filled microcapsules with prolonged anticorrosion performance. Progress in Organic Coatings, 2021, 154, 106220.	1.9	12
54	Correlating the adhesion of an acrylic coating to the physico-mechanical behavior of a polypropylene substrate. International Journal of Adhesion and Adhesives, 2011, 31, 220-225.	1.4	10

#	Article	IF	CITATIONS
55	Microencapsulation of 1-methylimidazole using solid epoxy resin: study on microcapsule residence time and properties of the system. Iranian Polymer Journal (English Edition), 2016, 25, 385-394.	1.3	10
56	Bio-based furan coatings: adhesion, mechanical and thermal properties. Polymer Bulletin, 2021, 78, 577-599.	1.7	10
57	Rheokinetics in curing process of polyfurfuryl alcohol: effect of homologous acid catalysts. Iranian Polymer Journal (English Edition), 2017, 26, 281-293.	1.3	9
58	Investigating changes in electrochemical properties when nano-silica is incorporated into an acrylic-based polyurethane clearcoat. Journal of Coatings Technology Research, 2012, 9, 195-201.	1.2	8
59	Curing of polyfurfuryl alcohol resin catalyzed by a homologous series of dicarboxylic acid catalysts. II. Swelling behavior and thermal properties. Journal of Applied Polymer Science, 2018, 135, 45770.	1.3	8
60	Durability and mechanical performance of a photo-catalytic water-based nanocomposite coating. Progress in Organic Coatings, 2017, 112, 254-262.	1.9	7
61	Studies of the Mechanical Properties and Practical Coating Adhesion on PP Modified by Oxidized Wax. Journal of Adhesion Science and Technology, 2010, 24, 1113-1129.	1.4	6
62	Glycidyl Methacrylate Copolymers Modified with CO ₂ . Soft Materials, 2013, 11, 430-439.	0.8	6
63	Thermooxidative reactions of polypropylene wax in the molten state. Journal of Applied Polymer Science, 2009, 111, 2703-2710.	1.3	4
64	Ionomers as self-healing materials. , 2020, , 279-291.		4
65	Composites and Nanocomposites of PU Polymers Filled with Natural Fibers and Their Nanofibers. , 2017, , 253-276.		3
66	Nanocomposites of PU Polymers Filled With Spherical Fillers. , 2017, , 135-172.		2
67	Self-healing polymeric coatings containing microcapsules filled with active materials., 2020,, 235-258.		2
68	Effect of Hydroxyl Value of Acrylic Resin on the Anti-graffiti Properties of Acrylic-PU Nanocoating. , 2020, , 316-319.		0
69	Hardness and Chemorheological Properties of Chemically-Modified Polyfurfuryl Alcohol Resin. , 2020, , 247-250.		0
70	Protection of Structural Buildings Against Dirt Adsorption: Photoactive Cements vs. Photoactive Coating., 2020,, 174-177.		0
71	Degradation of Pollutants in Solid and Gas States Using Waterborne Acrylic Nanocomposite Paints. SSRN Electronic Journal, 0, , .	0.4	0