Laura Ragni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4144345/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Making of Plant Armor: The Periderm. Annual Review of Plant Biology, 2022, 73, 405-432.	18.7	30
2	Auxin and gibberellin signaling cross-talk promotes hypocotyl xylem expansion and cambium homeostasis. Journal of Experimental Botany, 2021, 72, 3647-3660.	4.8	32
3	Tissue-Autonomous Phenylpropanoid Production Is Essential for Establishment of Root Barriers. Current Biology, 2021, 31, 965-977.e5.	3.9	37

Phloem exudate metabolic content reflects the response to water $\hat{a} \in deficit$ stress in pea plants (<i>Pisum) Tj ETQq0.0 rgBT Overlock T

5	Two Î ³ -zeins induce the unfolded protein response. Plant Physiology, 2021, 187, 1428-1444.	4.8	7
6	ABA homeostasis and long-distance translocation are redundantly regulated by ABCG ABA importers. Science Advances, 2021, 7, eabf6069.	10.3	34
7	The development of the periderm: the final frontier between a plant and its environment. Current Opinion in Plant Biology, 2020, 53, 10-14.	7.1	47
8	Pluripotent Pericycle Cells Trigger Different Growth Outputs by Integrating Developmental Cues into Distinct Regulatory Modules. Current Biology, 2020, 30, 4384-4398.e5.	3.9	24
9	Transcriptional regulatory framework for vascular cambium development in Arabidopsis roots. Nature Plants, 2019, 5, 1033-1042.	9.3	81
10	Tissueâ€specific study across the stem reveals the chemistry and transcriptome dynamics of birch bark. New Phytologist, 2019, 222, 1816-1831.	7.3	56
11	A molecular framework to study periderm formation in Arabidopsis. New Phytologist, 2018, 219, 216-229.	7.3	78
12	Secondary growth as a determinant of plant shape and form. Seminars in Cell and Developmental Biology, 2018, 79, 58-67.	5.0	69
13	Vascular Morphodynamics During Secondary Growth. Methods in Molecular Biology, 2017, 1544, 103-125.	0.9	11
14	Secondary development in the stem: when Arabidopsis and trees are closer than it seems. Current Opinion in Plant Biology, 2017, 35, 145-151.	7.1	33
15	Novel tools for quantifying secondary growth. Journal of Experimental Botany, 2017, 68, 89-95.	4.8	16
16	Repression of lateral organ boundary genes by PENNYWISE and POUND-FOOLISH is essential for meristem maintenance and flowering in Arabidopsis thaliana1. Plant Physiology, 2015, 169, pp.00915.2015.	4.8	60
17	Small but thick enough–Âthe Arabidopsis hypocotyl as a model to study secondary growth. Physiologia Plantarum, 2014, 151, 164-171	5.2	31
18	Automated quantitative histology reveals vascular morphodynamics during Arabidopsis hypocotyl secondary growth. ELife, 2014, 3, e01567.	6.0	37

Laura Ragni

#	Article	IF	CITATIONS
19	Suppression of <i>Arabidopsis</i> protophloem differentiation and root meristem growth by CLE45 requires the receptor-like kinase BAM3. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7074-7079.	7.1	174
20	A direct stimulatory role of mobile gibberellin in Arabidopsishypocotyl xylem expansion. BMC Proceedings, 2011, 5, .	1.6	0
21	Mobile Gibberellin Directly Stimulates <i>Arabidopsis</i> Hypocotyl Xylem Expansion Â. Plant Cell, 2011, 23, 1322-1336.	6.6	196
22	<i>BRX</i> promotes Arabidopsis shoot growth. New Phytologist, 2010, 188, 23-29.	7.3	34
23	A hyperactive quantitative trait locus allele of <i>Arabidopsis BRX</i> contributes to natural variation in root growth vigor. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8475-8480.	7.1	33
24	Spatio-temporal sequence of cross-regulatory events in root meristem growth. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22734-22739.	7.1	116
25	Interaction of <i>KNAT6</i> and <i>KNAT2</i> with <i>BREVIPEDICELLUS</i> and <i>PENNYWISE</i> in <i>Arabidopsis</i> Inflore Plant Cell, 2008, 20, 888-900.	sc ei tces.	153
26	Plant endoplasmin supports the protein secretory pathway and has a role in proliferating tissues. Plant Journal, 2006, 48, 657-673.	5.7	56
27	Pluripotent Pericycle Cells Trigger Different Growth Outputs by Integrating Developmental Cues into Distinct Regulatory Modules. SSRN Electronic Journal, 0, , .	0.4	1