Liqun Ning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4144266/publications.pdf

Version: 2024-02-01

28	1,210	17 h-index	28
papers	citations		g-index
30	30	30	1393
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	A brief review of extrusionâ€based tissue scaffold bioâ€printing. Biotechnology Journal, 2017, 12, 1600671.	1.8	172
2	Printability and Cell Viability in Bioprinting Alginate Dialdehyde-Gelatin Scaffolds. ACS Biomaterials Science and Engineering, 2019, 5, 2976-2987.	2.6	123
3	3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications. Biofabrication, 2018, 10, 035014.	3.7	112
4	Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity. ACS Applied Materials & Samp; Interfaces, 2020, 12, 44563-44577.	4.0	89
5	Characterization of Cell Damage and Proliferative Ability during and after Bioprinting. ACS Biomaterials Science and Engineering, 2018, 4, 3906-3918.	2.6	70
6	Influence of mechanical properties of alginate-based substrates on the performance of Schwann cells in culture. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 898-915.	1.9	69
7	Bioprintability: Physiomechanical and Biological Requirements of Materials for 3D Bioprinting Processes. Polymers, 2020, 12, 2262.	2.0	67
8	Bioprinting Schwann cell-laden scaffolds from low-viscosity hydrogel compositions. Journal of Materials Chemistry B, 2019, 7, 4538-4551.	2.9	54
9	Bio-fabrication of peptide-modified alginate scaffolds: Printability, mechanical stability and neurite outgrowth assessments. Bioprinting, 2019, 14, e00045.	2.9	48
10	3D Bioprinting of Neural Tissues. Advanced Healthcare Materials, 2021, 10, e2001600.	3.9	48
11	Process-induced cell damage: pneumatic versus screw-driven bioprinting. Biofabrication, 2020, 12, 025011.	3.7	47
12	Influence of Flow Behavior of Alginate–Cell Suspensions on Cell Viability and Proliferation. Tissue Engineering - Part C: Methods, 2016, 22, 652-662.	1.1	41
13	Bioprinting of Vascularized Tissue Scaffolds: Influence of Biopolymer, Cells, Growth Factors, and Gene Delivery. Journal of Healthcare Engineering, 2019, 2019, 1-20.	1.1	38
14	Experimental investigation of the double impact position effect on the mechanical behavior of low-velocity impact in CFRP laminates. Composites Part B: Engineering, 2020, 193, 108020.	5.9	30
15	Biomechanical factors in three-dimensional tissue bioprinting. Applied Physics Reviews, 2020, 7, 041319.	5.5	30
16	3D Bioprinted Bacteriostatic Hyperelastic Bone Scaffold for Damage-Specific Bone Regeneration. Polymers, 2021, 13, 1099.	2.0	22
17	Residual Stress and Affected Layer in Disc Milling of Titanium Alloy. Materials and Manufacturing Processes, 2016, 31, 1645-1653.	2.7	20
18	Noninvasive Three-Dimensional <i>In Situ</i> and <i>In Vivo</i> Characterization of Bioprinted Hydrogel Scaffolds Using the X-ray Propagation-Based Imaging Technique. ACS Applied Materials & Interfaces, 2021, 13, 25611-25623.	4.0	20

#	Article	IF	CITATIONS
19	Patientâ€Specific 3D Bioprinted Models of Developing Human Heart. Advanced Healthcare Materials, 2021, 10, e2001169.	3.9	18
20	A 3D Bioprinted in vitro Model of Neuroblastoma Recapitulates Dynamic Tumorâ€Endothelial Cell Interactions Contributing to Solid Tumor Aggressive Behavior. Advanced Science, 2022, 9, .	5.6	15
21	Antibacterial activities of zeolite/silver-graphene oxide nanocomposite in bone implants. Materials Technology, 2020, , 1-10.	1.5	14
22	A 3D Bioprinted In Vitro Model of Pulmonary Artery Atresia to Evaluate Endothelial Cell Response to Microenvironment. Advanced Healthcare Materials, 2021, 10, e2100968.	3.9	13
23	Tool wear in disk milling grooving of titanium alloy. Advances in Mechanical Engineering, 2016, 8, 168781401667162.	0.8	10
24	Adhesive Tissue Engineered Scaffolds: Mechanisms and Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 683079.	2.0	10
25	Nanomaterials for bioprinting: functionalization of tissue-specific bioinks. Essays in Biochemistry, 2021, 65, 429-439.	2.1	9
26	Micromechanisms of Cortical Bone Failure Under Different Loading Conditions. Journal of Biomechanical Engineering, 2020, 142, .	0.6	8
27	Influence of thermal mechanical coupling on surface integrity in disc milling grooving of titanium alloy. Machining Science and Technology, 2017, 21, 313-333.	1.4	7
28	Methacrylateâ€Modified Gold Nanoparticles Enable Noninvasive Monitoring of Photocrosslinked Hydrogel Scaffolds. Advanced NanoBiomed Research, 2022, 2, .	1.7	5