
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4143986/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Residence of REE, Y, Th and U in Granites and Crustal Protoliths; Implications for the Chemistry of Crustal Melts. Journal of Petrology, 1996, 37, 521-552.	2.8	846

2 Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS) Tj ETQq0 0 0 rg BT /Overlock 10 Tf 5

3	Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: an example from the Kinzigite Formation of lvrea-Verbano, NW Italy. Geochimica Et Cosmochimica Acta, 1999, 63, 1133-1153.	3.9	379
4	A LA-ICP-MS EVALUATION OF Zr RESERVOIRS IN COMMON CRUSTAL ROCKS: IMPLICATIONS FOR Zr AND Hf GEOCHEMISTRY, AND ZIRCON-FORMING PROCESSES. Canadian Mineralogist, 2006, 44, 693-714.	1.0	155
5	Mafic Precursors, Peraluminous Granitoids, and Late Lamprophyres in the Avila Batholith: A Model for the Generation of Variscan Batholiths in Iberia. Journal of Geology, 1999, 107, 399-419.	1.4	151
6	Zircon Inheritance Reveals Exceptionally Fast Crustal Magma Generation Processes in Central Iberia during the Cambro-Ordovician. Journal of Petrology, 2007, 48, 2327-2339.	2.8	150
7	Platinum-group elements as petrological indicators in mafic-ultramafic complexes of the central and southern Urals: preliminary results. Tectonophysics, 1997, 276, 181-194.	2.2	130
8	The Eocene bimodal Piranshahr massif of the Sanandaj–Sirjan Zone, NW Iran: a marker of the end of the collision in the Zagros orogen. Journal of the Geological Society, 2009, 166, 53-69.	2.1	125
9	Structural and geochronological constraints on the evolution of the Bou Azzer Neoproterozoic ophiolite (Anti-Atlas, Morocco). Precambrian Research, 2010, 182, 1-14.	2.7	114
10	The Nature, Origin, and Thermal Influence of the Granite Source Layer of Central Iberia. Journal of Geology, 2003, 111, 579-595.	1.4	110
11	High-Ti amphibole as a petrogenetic indicator of magma chemistry: evidence for mildly alkalic-hybrid melts during evolution of Variscan basic–ultrabasic magmatism of Central Iberia. Contributions To Mineralogy and Petrology, 2009, 158, 69-98.	3.1	103
12	Two distinct Late Mesoproterozoic/Early Neoproterozoic basement provinces in central/eastern Dronning Maud Land, East Antarctica: The missing link, 15–21°E. Precambrian Research, 2015, 265, 249-272.	2.7	89
13	Unraveling sources of A-type magmas in juvenile continental crust: Constraints from compositionally diverse Ediacaran post-collisional granitoids in the Katerina Ring Complex, southern Sinai, Egypt. Lithos, 2014, 192-195, 56-85.	1.4	88
14	Ediacaran to Lower Ordovician age for rocks ascribed to the Schist–Graywacke Complex (Iberian) Tj ETQq0 0 C 22, 928-942.	0 rgBT /Ov 6.0	erlock 10 Tf 87
15	Accurate determination of 87Rb/86Sr and 147Sm/144Nd ratios by inductively-coupled-plasma mass spectrometry in isotope geoscience: an alternative to isotope dilution analysis. Analytica Chimica Acta, 1998, 358, 227-233.	5.4	83
16	The palaeogeographic position of Central Iberia in Gondwana during the Ordovician: evidence from zircon chronology and Nd isotopes. Terra Nova, 2010, 22, 341-346.	2.1	83
17	Zircon ages of the metavolcanic rocks and metagranites of the Ollo de Sapo Domain in central Spain: implications for the Neoproterozoic to Early Palaeozoic evolution of Iberia. Geological Magazine, 2007, 144, 963-976.	1.5	82
18	Uralian magmatism: an overview. Tectonophysics, 1997, 276, 87-102.	2.2	81

#	Article	IF	CITATIONS
19	Zircon Geochronology of the Ollo de Sapo Formation and the Age of the Cambro-Ordovician Rifting in Iberia. Journal of Geology, 2009, 117, 174-191.	1.4	79
20	Peraluminous granites frequently with mantle-like isotope compositions: the continental-type Murzinka and Dzhabyk batholiths of the eastern Urals. International Journal of Earth Sciences, 2002, 91, 3-19.	1.8	78
21	Pressure-Dependence of Rare Earth Element Distribution in Amphibolite- and Granulite- Grade Garnets. A LA-ICP-MS Study. Geostandards and Geoanalytical Research, 1997, 21, 253-270.	3.1	74
22	New insights from U–Pb zircon dating of Early Ordovician magmatism on the northern Gondwana margin: The Urra Formation (SW Iberian Massif, Portugal). Tectonophysics, 2008, 461, 114-129.	2.2	74
23	Recycling of continental crust into the mantle as revealed by Kytlym dunite zircons, Ural Mts, Russia. Terra Nova, 2001, 13, 407-412.	2.1	72
24	Deformation-driven differentiation of granitic magma: the Stepninsk pluton of the Uralides, Russia. Lithos, 2005, 81, 209-233.	1.4	72
25	U-Pb ion microprobe dating and Sr and Nd isotope geology of the Galiñeiro Igneous Complex. Lithos, 2009, 107, 227-238.	1.4	72
26	Zircon dating, Sr and Nd isotopes, and element geochemistry of the Khalifan pluton, NW Iran: Evidence for Variscan magmatism in a supposedly Cimmerian superterrane. Journal of Asian Earth Sciences, 2011, 40, 172-179.	2.3	72
27	Anomalous alkaline rocks of Soustov, Kola: evidence of mantle-derived metasomatic fluids affecting crustal materials. Contributions To Mineralogy and Petrology, 2001, 140, 554-566.	3.1	70
28	Zircon thermometry and U–Pb ion-microprobe dating of the gabbros and associated migmatites of the Variscan Toledo Anatectic Complex, Central Iberia. Journal of the Geological Society, 2006, 163, 847-855.	2.1	67
29	Geochronological data on the Rabat–Tiflet granitoids: Their bearing on the tectonics of the Moroccan Variscides. Journal of African Earth Sciences, 2010, 57, 1-13.	2.0	67
30	Age, Geochemistry and Petrogenesis of the Ultramafic Pipes in the Ivrea Zone, NW Italy. Journal of Petrology, 2001, 42, 433-457.	2.8	65
31	U–Pb Zircon geochronology of the Cambro-Ordovician metagranites and metavolcanic rocks of central and NW Iberia. International Journal of Earth Sciences, 2013, 102, 1-23.	1.8	59
32	Single-zircon evaporation ages and Rb–Sr dating of four major Variscan batholiths of the Urals. Tectonophysics, 2000, 317, 93-108.	2.2	58
33	Within-plate calc-alkaline rocks: Insights from alkaline mafic magma–peraluminous crustal melt hybrid appinites of the Central Iberian Variscan continental collision. Lithos, 2009, 110, 50-64.	1.4	57
34	Kola alkaline province in the Paleozoic: evaluation of primary mantle magma composition and magma generation conditions. Russian Journal of Earth Sciences, 2001, 3, 1-32.	0.7	52
35	55 million years of continuous anatexis in Central Iberia: single-zircon dating of the Peña Negra Complex. Journal of the Geological Society, 2004, 161, 255-263.	2.1	51
36	Generation and evolution of subduction-related batholiths from the central Urals: constraints on the P-T history of the Uralian orogen. Tectonophysics, 1997, 276, 103-116.	2.2	50

#	Article	IF	CITATIONS
37	The â^¼844Ma Moneiga quartz-diorites of the Sinai, Egypt: Evidence for Andean-type arc or rift-related magmatism in the Arabian-Nubian Shield?. Precambrian Research, 2009, 175, 161-168.	2.7	47
38	Th-REE- and Nb-Ta-accessory minerals in post-collisional Ediacaran felsic rocks from the Katerina Ring Complex (S. Sinai, Egypt): An assessment for the fractionation of Y/Nb, Th/Nb, La/Nb and Ce/Pb in highly evolved A-type granites. Lithos, 2016, 258-259, 173-196.	1.4	46
39	Microanalysis of minerals by an Excimer UV-LA-ICP-MS system. Chemical Geology, 1996, 133, 145-156.	3.3	44
40	SHRIMP U–Pb zircon dating of the Katerina Ring Complex: Insights into the temporal sequence of Ediacaran calc-alkaline to peralkaline magmatism in southern Sinai, Egypt. Gondwana Research, 2012, 21, 887-900.	6.0	44
41	Timing of Archean crust formation and cratonization in the Awsard-Tichla zone of the NW Reguibat Rise, West African Craton: A SHRIMP, Nd–Sr isotopes, and geochemical reconnaissance study. Precambrian Research, 2014, 242, 112-137.	2.7	41
42	Palaeogeography and crustal evolution of the Ossa–Morena Zone, southwest Iberia, and the North Gondwana margin during the Cambro-Ordovician: a review of isotopic evidence. International Geology Review, 2017, 59, 94-130.	2.1	41
43	2.46Ga kalsilite and nepheline syenites from the Awsard pluton, Reguibat Rise of the West African Craton, Morocco. Generation of extremely K-rich magmas at the Archean–Proterozoic transition. Precambrian Research, 2013, 224, 242-254.	2.7	40
44	Lamprophyre dikes as tectonic markers of late orogenic transtension timing and kinematics: A case study from the Central Iberian Zone. Tectonics, 2011, 30, .	2.8	39
45	SHRIMP dating and Nd isotope geology of the Archean terranes of the Uweinat-Kamil inlier, Egypt–Sudan–Libya. Precambrian Research, 2011, 189, 328-346.	2.7	39
46	Metamorphic and deformational imprint of Cambrian–Lower Ordovician rifting in the Ossa-Morena Zone (Iberian Massif, Spain). Journal of Structural Geology, 2003, 25, 2077-2087.	2.3	38
47	SHRIMP U–Pb zircon dating of the Valencia del Ventoso plutonic complex, Ossa-Morena Zone, SW Iberia: Early Carboniferous intra-orogenic extension-related â€~calc-alkaline' magmatism. Gondwana Research, 2015, 28, 735-756.	6.0	34
48	Lu-Hf ratios of crustal rocks and their bearing on zircon Hf isotope model ages: The effects of accessories. Chemical Geology, 2018, 484, 179-190.	3.3	34
49	Contrasting SHRIMP U–Pb zircon ages of two carbonatite complexes from the peri-cratonic terranes of the Reguibat Shield: Implications for the lateral extension of the West African Craton. Gondwana Research, 2016, 38, 238-250.	6.0	33
50	The Calzadilla Ophiolite (SW Iberia) and the Ediacaran fore-arc evolution of the African margin of Gondwana. Gondwana Research, 2018, 58, 71-86.	6.0	32
51	Granitoids of the Uralides: Implications for the evolution of the orogen. Geophysical Monograph Series, 2002, , 211-232.	0.1	31
52	Jurassic guyots on the Southern Iberian Continental Margin: a model of isolated carbonate platforms on volcanic submarine edifices. Terra Nova, 1997, 9, 163-166.	2.1	30
53	Diffusion-induced disturbances of the U–Pb isotope system in pre-magmatic zircon and their influence on SIMS dating. A numerical study. Chemical Geology, 2013, 349-350, 1-17.	3.3	30
54	Geodynamic settings and history of the Paleozoic intrusive magmatism of the central and southern Urals: Results of zircon dating. Geotectonics, 2007, 41, 465-486.	0.9	29

#	Article	IF	CITATIONS
55	First evidence for Cambrian rift-related magmatism in the West African Craton margin: The Derraman Peralkaline Felsic Complex. Gondwana Research, 2016, 36, 423-438.	6.0	29
56	Anomalous xenocryst dispersion during tonalite–granodiorite crystal mush hybridization in the mid crust: Mineralogical and geochemical evidence from Variscan appinites (Avila Batholith, Central) Tj ETQq0 0 0 rgI	3T ‡Qiverlo	ck 2180 Tf 50 69
57	Trace elements in minerals as indicators of the evolution of alkaline ultrabasic dike series: LA-ICP-MS data for the magmatic provinces of northeastern Fennoscandia and Germany. Petrology, 2009, 17, 46-72.	0.9	27
58	Protolith ages of eclogites, Marun-Keu Complex, Polar Urals, Russia: implications for the pre- and early Uralian evolution of the northeastern European continental margin. Geological Society Memoir, 2004, 30, 87-105.	1.7	25
59	Shoshonites, vaugnerites and potassic lamprophyres: similarities and differences between â€~ultra'-high-K rocks. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2008, 99, 159-175.	0.3	25
60	Kalsilite-bearing plutonic rocks: The deep-seated Archean Awsard massif of the Reguibat Rise, South Morocco, West African Craton. Earth-Science Reviews, 2014, 138, 1-24.	9.1	25
61	The Bir Safsaf Precambrian inlier of South West Egypt revisited. A model for ~1.5Ga TDM late Pan-African granite generation by crustal reworking. Lithos, 2011, 125, 897-914.	1.4	23
62	Zircon stability grids in crustal partial melts: implications for zircon inheritance. Contributions To Mineralogy and Petrology, 2021, 176, 1.	3.1	23
63	Proterozoic Gremyakha-Vyrmes Polyphase Massif, Kola Peninsula: An example of mixing basic and alkaline mantle melts. Petrology, 2006, 14, 361-389.	0.9	20
64	The Archean to Late-Paleozoic architecture of the Oulad Dlim Massif, the main Gondwanan indenter during the collision with Laurentia. Earth-Science Reviews, 2020, 208, 103273.	9.1	19
65	Mineralogical evidence for lamproite magma mixing and storage at mantle depths: Socovos fault lamproites, SE Spain. Lithos, 2016, 266-267, 182-201.	1.4	18
66	Experimental evidence for the preservation of U-Pb isotope ratios in mantle-recycled crustal zircon grains. Scientific Reports, 2018, 8, 12904.	3.3	18
67	Zircon xenocryst evidence for crustal recycling at the Mid-Atlantic Ridge. Lithos, 2020, 354-355, 105361.	1.4	18
68	Isotopic-geochemical features and age of zircons in dunites of the platinum-bearing type Uralian massifs: Petrogenetic implications. Petrology, 2009, 17, 503-520.	0.9	17
69	Four decades of geochronological work in the Southern and Middle Urals: A review. Geophysical Monograph Series, 2002, , 233-255.	0.1	16
70	Initial Pangean rifting north of the West African Craton: Insights from late Permian U-Pb and 40Ar/39Ar dating of alkaline magmatism from the Eastern Anti-Atlas (Morocco). Journal of Geodynamics, 2019, 132, 101670.	1.6	15
71	A reassessment of the amphibole-plagioclase NaSi-CaAl exchange thermometer with applications to igneous and high-grade metamorphic rocks. American Mineralogist, 2021, 106, 782-800.	1.9	14
72	Zircon crystallization in low-Zr mafic magmas: Possible or impossible?. Chemical Geology, 2022, 602, 120898.	3.3	14

#	Article	IF	CITATIONS
73	Polygenous zircons in the Adui batholith (middle Urals). Doklady Earth Sciences, 2006, 410, 1096-1100.	0.7	13
74	Constraints of mantle and crustal sources and interaction during orogenesis: A zircon SHRIMP U-Th-Pb and O isotope study of the †calc-alkaline' Brovales pluton, Ossa-Morena Zone, Iberian Variscan Belt. Lithos, 2019, 324-325, 661-683.	1.4	12
75	Contrasting high-Mg, high-K rocks in Central Iberia: the appinite—vaugnerite conundrum and their (non-existent) relation with arc magmatism. Journal of Iberian Geology, 2021, 47, 235-261.	1.3	12
76	The U–Pb SHRIMP age of zircons from diorites of the Tomino–Bereznyaki ore field (<i>South Urals,) Tj ETQq0 54, 1332-1339.</i>	0 0 rgBT / 0.7	Overlock 10 11
77	The polychronous nature of zircons in gabbroids of the Ural Platinum Belt and the issue of the Precambrian in the Tagil Synclinorium. Doklady Earth Sciences, 2007, 413, 457-461.	0.7	10
78	Petrogenesis of Derraman Peralkaline granite (Oulad Dlim Massif, West African Craton Margin,) Tj ETQq0 0 0 rgBT Geoscience, 2018, 350, 236-244.	/Overlock 1.2	2 10 Tf 50 54 10
79	The Archean kalsilite-nepheline syenites of the Awsard intrusive massif (Reguibat Shield, West African) Tj ETQq1 1 Sciences, 2017, 127, 16-50.	0.784314 2.0	rgBT /Over 9
80	High-P amphibolite-facies metamorphism in the Adrar–Souttouf Metamafic Complex, Oulad Dlim Massif (West African Craton margin, Morocco). Comptes Rendus - Geoscience, 2018, 350, 245-254.	1.2	9
81	Title is missing!. Estudios Geologicos, 1999, 55, .	0.2	9
82	Intrusive magmatism during early evolutionary stages of the Ural epioceanic orogen: U-Pb geochronology (LA ICP MS, NORDSIM, and SHRIMP II), geochemistry, and evolutionary tendencies. Geochemistry International, 2009, 47, 143-162.	0.7	8
83	Rare earth elements in rocks and minerals from alkaline plutons of the Kola Peninsula, NW Russia, as indicators of alkaline magma evolution. Russian Journal of Earth Sciences, 2002, 4, 187-209.	0.7	7
84	Quartzite crests in Paleoproterozoic granites (Anti-Atlas, Morocco); a hint to Pan-African deformation of the West African Craton margin. Journal of African Earth Sciences, 2019, 157, 103501.	2.0	6
85	The Beni Bousera marbles, record of a Triassic-Early Jurassic hyperextended margin in the Alpujarrides-Sebtides units (Rif belt, Morocco). Bulletin - Societie Geologique De France, 2021, 192, 26.	2.2	6
86	U–Pb Dating, Oxygen and Hafnium Isotope Ratios of Zircon from Rocks of Oceanic Core Complexes at the Mid-Atlantic Ridge: Evidence for the Interaction of Contemporary and Ancient Crusts in the Spreading Center of the Ocean Floor. Doklady Earth Sciences, 2019, 489, 1396-1401.	0.7	5
87	Compositional Evolution of the Variscan Intra-Orogenic Extensional Magmatism in the Valencia del Ventoso Plutonic Complex, Ossa-Morena Zone (SW Iberia): A View from Amphibole Compositional Relationships. Minerals (Basel, Switzerland), 2021, 11, 431.	2.0	5
88	Multiple Melting of a Heterogeneous Mantle and Episodic Accretion of Oceanic Crust in a Spreading Zone: Zircon U-Pb Age and Hf-O Isotope Evidence from an Oceanic Core Complex of the Mid-Atlantic Ridge. Petrology, 2022, 30, 1-24.	0.9	5
89	Age and Isotope-Geochemical Features of the Murzinka–Adui Metamorphic Complex in Connection with the Problem of Formation of the Murzinka Interformational Granite Pluton. Russian Geology and Geophysics, 2019, 60, 287-308.	0.7	4
90	Age of zircon from apoharzburgite serpentinite representing mantle of the Uralian paleoocean. Geochemistry International, 2017, 55, 675-682.	0.7	3

#	Article	IF	CITATIONS
91	Experimental Annealing of Zircon: Influence of Inclusions on Stability, Intracrystalline Melt Migration, Common Lead Leaching, and Permeability to Fluids. ACS Earth and Space Chemistry, 2022, 6, 288-307.	2.7	3
92	Zircons and the problem of Precambrian in the main granite belt of the Urals: Evidence from the Kozhubaevo Metamorphic Complex. Doklady Earth Sciences, 2006, 408, 612-616.	0.7	2
93	Evidence for Sveconorwegian (Grenvillian) magmatic activity in the Northwestern Baltic Shield. Doklady Earth Sciences, 2006, 410, 1034-1037.	0.7	2
94	Reply to discussion on the Eocene bimodal Piranshahr massif of the Sanadaj–Sirjan Zone, West Iran: a marker of the end of collision in the Zagros orogen. Journal of the Geological Society, 2009, 166, 983-984.	2.1	1
95	On the Seventh Hutton Symposium on the origin of granites and related rocks. Lithos, 2012, 153, 1-2.	1.4	0
96	Zircon U–Pb geochronology and Sr-Nd-O isotopic constraints on the petrogenesis of the Jálama pluton (Central Iberian Zone, Spain). Lithos, 2021, 386-387, 106002.	1.4	0
97	The roles of partial melting of metasomatised mantle, magma mixing at continental crust level and fractionation in calc-alkaline minette genesis. SE Spain International Ceology Review, 2024, 66, 463-503	2.1	О