Biao Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4143945/publications.pdf

Version: 2024-02-01

66343 110387 6,805 66 42 64 citations h-index g-index papers 68 68 68 3598 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	On the grinding performance of alumina wheels in ultrasonic vibration–assisted grinding of hardened GCr15 steel. International Journal of Advanced Manufacturing Technology, 2022, 120, 1695-1706.	3.0	6
2	Ti ₃ C ₂ T _{<i>x</i>} /rGO aerogel towards high electromagnetic wave absorption and thermal resistance. CrystEngComm, 2022, 24, 4556-4563.	2.6	13
3	Recyclable magnetic carbon foams possessing voltage-controllable electromagnetic shielding and oil/water separation. Carbon, 2022, 197, 570-578.	10.3	15
4	Investigation of the pore-size dependent microwave absorption properties of honeycomb SnO2. Journal of Materials Science: Materials in Electronics, 2021, 32, 25725-25734.	2.2	5
5	Enhancement of electromagnetic interference shielding from the synergism between Cu@Ni nanorods and carbon materials in flexible composite films. Materials Advances, 2021, 2, 718-727.	5.4	20
6	Advances in electromagnetic shielding properties of composite foams. Journal of Materials Chemistry A, 2021, 9, 8896-8949.	10.3	184
7	Opportunities and challenges in microwave absorption of nickel–carbon composites. Physical Chemistry Chemical Physics, 2021, 23, 20795-20834.	2.8	29
8	Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption. Carbon, 2021, 176, 411-420.	10.3	162
9	High-Performance Joule Heating and Electromagnetic Shielding Properties of Anisotropic Carbon Scaffolds. ACS Applied Materials & Distriction (2011) 13, 29101-29112.	8.0	51
10	On the grinding performance of metal-bonded aggregated cBN grinding wheels based on open-pore structures. Ceramics International, 2021, 47, 19709-19715.	4.8	11
11	Tailoring Microwave Electromagnetic Responses in Ti ₃ C ₂ T _{<i>x</i>>} MXene with Fe ₃ O ₄ Nanoparticle Decoration via a Solvothermal Method. Journal of Physical Chemistry C, 2021, 125, 19914-19924.	3.1	33
12	Co decorated polymer-derived SiCN ceramic aerogel composites with ultrabroad microwave absorption performance. Journal of Alloys and Compounds, 2020, 813, 152007.	5 . 5	40
13	Achieving wideband microwave absorption properties in PVDF nanocomposite foams with an ultra-low MWCNT content by introducing a microcellular structure. Journal of Materials Chemistry C, 2020, 8, 58-70.	5.5	120
14	Flexible PVDF/carbon materials/Ni composite films maintaining strong electromagnetic wave shielding under cyclic microwave irradiation. Journal of Materials Chemistry C, 2020, 8, 500-509.	5. 5	76
15	Enhanced Electromagnetic Wave-Absorbing Performance of Magnetic Nanoparticles-Anchored 2D Ti ₃ C ₂ T <i>_x</i> MXene. ACS Applied Materials & amp; Interfaces, 2020, 12, 2644-2654.	8.0	194
16	Highly Compressible Polymer Composite Foams with Thermal Heating-Boosted Electromagnetic Wave Absorption Abilities. ACS Applied Materials & Samp; Interfaces, 2020, 12, 50793-50802.	8.0	47
17	Flexible PEBAX/graphene electromagnetic shielding composite films with a negative pressure effect of resistance for pressure sensors applications. RSC Advances, 2020, 10, 1535-1543.	3.6	29
18	Light-weight and high-efficiency electromagnetic wave shielding properties based on waste straw porous carbon. Journal of Materials Science: Materials in Electronics, 2020, 31, 4963-4971.	2.2	10

#	Article	IF	Citations
19	Viscoelastic and Magnetically Aligned Flaky Fe-Based Magnetorheological Elastomer Film for Wide-Bandwidth Electromagnetic Wave Absorption. Industrial & Engineering Chemistry Research, 2020, 59, 3425-3437.	3.7	26
20	Dependence of electromagnetic interference shielding ability of conductive polymer composite foams with hydrophobic properties on cellular structure. Journal of Materials Chemistry C, 2020, 8, 7401-7410.	5.5	70
21	A versatile foaming platform to fabricate polymer/carbon composites with high dielectric permittivity and ultra-low dielectric loss. Journal of Materials Chemistry A, 2019, 7, 133-140.	10.3	111
22	Flexible PVDF/CNTs/Ni@CNTs composite films possessing excellent electromagnetic interference shielding and mechanical properties under heat treatment. Carbon, 2019, 155, 34-43.	10.3	99
23	Insight into the Directional Thermal Transport of Hexagonal Boron Nitride Composites. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41726-41735.	8.0	33
24	Symmetrical polyhedron-bowl Co/CoO with hexagonal plate to forward electromagnetic wave absorption ability. CrystEngComm, 2019, 21, 816-826.	2.6	74
25	Promising Ti ₃ C ₂ T <i>_x</i> MXene/Ni Chain Hybrid with Excellent Electromagnetic Wave Absorption and Shielding Capacity. ACS Applied Materials & Samp; Interfaces, 2019, 11, 25399-25409.	8.0	337
26	Dissolution kinetics of lead from a lead-oxide ore that consists mainly of cerussite by trichloroacetic acid and optimization of dissolution conditions. Separation Science and Technology, 2019, 54, 828-836.	2.5	3
27	Poly(vinylidene fluoride) foams: a promising low- <i>k</i> Journal of Materials Chemistry C, 2018, 6, 3065-3073.	5.5	110
28	AIFD Based 2D Image Registration to Multi-View Stereo Mapped 3D Models. Neural Processing Letters, 2018, 48, 1261-1279.	3.2	0
29	Novel two-dimensional Ti ₃ C ₂ T _x MXenes/nano-carbon sphere hybrids for high-performance microwave absorption. Journal of Materials Chemistry C, 2018, 6, 5690-5697.	5.5	215
30	Enhanced Thermal Conductivity of Graphene Nanoplatelet–Polymer Nanocomposites Fabricated via Supercritical Fluid-Assisted in Situ Exfoliation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 1225-1236.	8.0	114
31	A novel sponge-like 2D Ni/derivative heterostructure to strengthen microwave absorption performance. Physical Chemistry Chemical Physics, 2018, 20, 28623-28633.	2.8	101
32	Quick Heat Dissipation in Absorption-Dominated Microwave Shielding Properties of Flexible Poly(vinylidene fluoride)/Carbon Nanotube/Co Composite Films with Anisotropy-Shaped Co (Flowers) Tj ETQq0 0	0 sgBT /C	ve 9l ack 10 Ti
33	Investigation on the growth mechanism of SiC whiskers during microwave synthesis. Physical Chemistry Chemical Physics, 2018, 20, 25799-25805.	2.8	25
34	Incorporating a microcellular structure into PVDF/graphene–nanoplatelet composites to tune their electrical conductivity and electromagnetic interference shielding properties. Journal of Materials Chemistry C, 2018, 6, 10292-10300.	5.5	165
35	Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO. Journal of Materials Chemistry C, 2018, 6, 7128-7140.	5 . 5	98
36	Hierarchical porous Ni@boehmite/nickel aluminum oxide flakes with enhanced microwave absorption ability. Physical Chemistry Chemical Physics, 2017, 19, 9128-9136.	2.8	112

#	Article	IF	Citations
37	Constructing hierarchical hollow CuS microspheres via a galvanic replacement reaction and their use as wide-band microwave absorbers. CrystEngComm, 2017, 19, 2178-2186.	2.6	121
38	Facile design of a ZnO nanorod–Ni core–shell composite with dual peaks to tune its microwave absorption properties. RSC Advances, 2017, 7, 9294-9302.	3.6	106
39	Tailoring Microwave-Absorption Properties of Co x Ni y Alloy/RGO Nanocomposites with Tunable Atomic Ratios. Journal of Electronic Materials, 2017, 46, 2164-2171.	2.2	13
40	Affine scale space: an affine invariant image structure to promote the detection of correspondences from stereo images. Neurocomputing, 2017, 252, 34-41.	5.9	0
41	Investigation on heating behavior during the preparation of SiC crystals by microwave sintering. International Journal of Applied Ceramic Technology, 2017, 14, 880-888.	2.1	12
42	An impedance match method used to tune the electromagnetic wave absorption properties of hierarchical ZnO assembled by porous nanosheets. CrystEngComm, 2017, 19, 3640-3648.	2.6	51
43	Flexible, Ultrathin, and High-Efficiency Electromagnetic Shielding Properties of Poly(Vinylidene) Tj ETQq1 1 0.7843	314 rgBT 8.0	/Overlock 10
44	Lightweight porous Co ₃ O ₄ and Co/CoO nanofibers with tunable impedance match and configuration-dependent microwave absorption properties. CrystEngComm, 2017, 19, 6095-6106.	2.6	92
45	1D Cu@Ni nanorods anchored on 2D reduced graphene oxide with interfacial engineering to enhance microwave absorption properties. CrystEngComm, 2017, 19, 6579-6587.	2.6	62
46	Tunable electromagnetic shielding properties of conductive poly(vinylidene fluoride)/Ni chain composite films with negative permittivity. Journal of Materials Chemistry C, 2017, 5, 6954-6961.	5.5	139
47	Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Research, 2017, 10, 331-343.	10.4	342
48	Yolk–Shell Ni@SnO ₂ Composites with a Designable Interspace To Improve the Electromagnetic Wave Absorption Properties. ACS Applied Materials & Interfaces, 2016, 8, 28917-28925.	8.0	526
49	Microwave absorption properties of CoNi nanoparticles anchored on the reduced grapheme oxide. Journal of Materials Science: Materials in Electronics, 2016, 27, 8408-8415.	2.2	28
50	Morphology-Control Synthesis of a Core–Shell Structured NiCu Alloy with Tunable Electromagnetic-Wave Absorption Capabilities. ACS Applied Materials & Samp; Interfaces, 2015, 7, 12951-12960.	8.0	347
51	Enhanced microwave absorption capabilities of Ni microspheres after coating with SnO2 nanoparticles. Journal of Materials Science: Materials in Electronics, 2015, 26, 5393-5399.	2.2	33
52	Preparation of Honeycomb SnO ₂ Foams and Configuration-Dependent Microwave Absorption Features. ACS Applied Materials & Samp; Interfaces, 2015, 7, 26217-26225.	8.0	163
53	Facile synthesis and enhanced microwave absorption properties of novel hierarchical heterostructures based on a Ni microsphere–CuO nano-rice core–shell composite. Physical Chemistry Chemical Physics, 2015, 17, 6044-6052.	2.8	109
54	Facile synthesis of crumpled ZnS net-wrapped Ni walnut spheres with enhanced microwave absorption properties. RSC Advances, 2015, 5, 9806-9814.	3.6	65

#	Article	IF	CITATIONS
55	Time-sensitivity for the preparation and microwave absorption properties of core–shell structured Ni/TiO2 composite microspheres. Journal of Materials Science: Materials in Electronics, 2015, 26, 8848-8853.	2.2	8
56	Preparation and electromagnetic wave absorption properties of novel dendrite-like NiCu alloy composite. RSC Advances, 2015, 5, 42587-42590.	3.6	26
57	Facile preparation and enhanced microwave absorption properties of core–shell composite spheres composited of Ni cores and TiO ₂ shells. Physical Chemistry Chemical Physics, 2015, 17, 8802-8810.	2.8	144
58	Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. Journal of Materials Chemistry A, 2015, 3, 10345-10352.	10.3	474
59	In situ synthesis of novel urchin-like ZnS/Ni ₃ S ₂ @Ni composite with a core–shell structure for efficient electromagnetic absorption. Journal of Materials Chemistry C, 2015, 3, 10862-10869.	5.5	103
60	Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO ₂ hybrids. Dalton Transactions, 2015, 44, 15984-15993.	3.3	105
61	Facile Synthesis of Novel Heterostructure Based on SnO ₂ Nanorods Grown on Submicron Ni Walnut with Tunable Electromagnetic Wave Absorption Capabilities. ACS Applied Materials & Date: Accordance (1988) 18815-18823.	8.0	179
62	Investigation of the electromagnetic absorption properties of Ni@TiO ₂ and Ni@SiO ₂ composite microspheres with core–shell structure. Physical Chemistry Chemical Physics, 2015, 17, 2531-2539.	2.8	275
63	ZnS nanowall coated Ni composites: facile preparation and enhanced electromagnetic wave absorption. RSC Advances, 2014, 4, 61219-61225.	3.6	53
64	Solvothermal synthesis and electromagnetic absorption properties of pyramidal Ni superstructures. Journal of Materials Research, 2014, 29, 1431-1439.	2.6	7
65	Fabrication and enhanced microwave absorption properties of Al ₂ O ₃ nanoflake-coated Ni core–shell composite microspheres. RSC Advances, 2014, 4, 57424-57429.	3.6	84
66	Facile synthesis and novel microwave electromagnetic properties of flower-like Ni structures by a solvothermal method. Journal of Materials Science: Materials in Electronics, 2014, 25, 3614-3621.	2.2	43