Biao Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4143945/publications.pdf Version: 2024-02-01

Βιλο Ζηλο

#	Article	IF	CITATIONS
1	Yolk–Shell Ni@SnO ₂ Composites with a Designable Interspace To Improve the Electromagnetic Wave Absorption Properties. ACS Applied Materials & Interfaces, 2016, 8, 28917-28925.	8.0	526
2	Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. Journal of Materials Chemistry A, 2015, 3, 10345-10352.	10.3	474
3	Morphology-Control Synthesis of a Core–Shell Structured NiCu Alloy with Tunable Electromagnetic-Wave Absorption Capabilities. ACS Applied Materials & Interfaces, 2015, 7, 12951-12960.	8.0	347
4	Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Research, 2017, 10, 331-343.	10.4	342
5	Promising Ti ₃ C ₂ T <i>_x</i> MXene/Ni Chain Hybrid with Excellent Electromagnetic Wave Absorption and Shielding Capacity. ACS Applied Materials & Interfaces, 2019, 11, 25399-25409.	8.0	337
6	Investigation of the electromagnetic absorption properties of Ni@TiO ₂ and Ni@SiO ₂ composite microspheres with core–shell structure. Physical Chemistry Chemical Physics, 2015, 17, 2531-2539.	2.8	275
7	Flexible, Ultrathin, and High-Efficiency Electromagnetic Shielding Properties of Poly(Vinylidene) Tj ETQq1 1 0.7843	814 rgBT / 8.0	Overlock 10 264
8	Novel two-dimensional Ti ₃ C ₂ T _x MXenes/nano-carbon sphere hybrids for high-performance microwave absorption. Journal of Materials Chemistry C, 2018, 6, 5690-5697.	5.5	215
9	Enhanced Electromagnetic Wave-Absorbing Performance of Magnetic Nanoparticles-Anchored 2D Ti ₃ C ₂ T <i>_x</i> MXene. ACS Applied Materials & Interfaces, 2020, 12, 2644-2654.	8.0	194
10	Advances in electromagnetic shielding properties of composite foams. Journal of Materials Chemistry A, 2021, 9, 8896-8949.	10.3	184
11	Facile Synthesis of Novel Heterostructure Based on SnO ₂ Nanorods Grown on Submicron Ni Walnut with Tunable Electromagnetic Wave Absorption Capabilities. ACS Applied Materials & Interfaces, 2015, 7, 18815-18823.	8.0	179
12	Incorporating a microcellular structure into PVDF/graphene–nanoplatelet composites to tune their electrical conductivity and electromagnetic interference shielding properties. Journal of Materials Chemistry C, 2018, 6, 10292-10300.	5.5	165
13	Preparation of Honeycomb SnO ₂ Foams and Configuration-Dependent Microwave Absorption Features. ACS Applied Materials & Interfaces, 2015, 7, 26217-26225.	8.0	163
14	Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption. Carbon, 2021, 176, 411-420.	10.3	162
15	Facile preparation and enhanced microwave absorption properties of core–shell composite spheres composited of Ni cores and TiO ₂ shells. Physical Chemistry Chemical Physics, 2015, 17, 8802-8810.	2.8	144
16	Tunable electromagnetic shielding properties of conductive poly(vinylidene fluoride)/Ni chain composite films with negative permittivity. Journal of Materials Chemistry C, 2017, 5, 6954-6961.	5.5	139
17	Constructing hierarchical hollow CuS microspheres via a galvanic replacement reaction and their use as wide-band microwave absorbers. CrystEngComm, 2017, 19, 2178-2186.	2.6	121
18	Achieving wideband microwave absorption properties in PVDF nanocomposite foams with an ultra-low MWCNT content by introducing a microcellular structure. Journal of Materials Chemistry C, 2020, 8, 58-70.	5.5	120

Βιάο Ζηλο

#	Article	IF	CITATIONS
19	Enhanced Thermal Conductivity of Graphene Nanoplatelet–Polymer Nanocomposites Fabricated via Supercritical Fluid-Assisted in Situ Exfoliation. ACS Applied Materials & Interfaces, 2018, 10, 1225-1236.	8.0	114
20	Hierarchical porous Ni@boehmite/nickel aluminum oxide flakes with enhanced microwave absorption ability. Physical Chemistry Chemical Physics, 2017, 19, 9128-9136.	2.8	112
21	A versatile foaming platform to fabricate polymer/carbon composites with high dielectric permittivity and ultra-low dielectric loss. Journal of Materials Chemistry A, 2019, 7, 133-140.	10.3	111
22	Poly(vinylidene fluoride) foams: a promising low- <i>k</i> dielectric and heat-insulating material. Journal of Materials Chemistry C, 2018, 6, 3065-3073.	5.5	110
23	Facile synthesis and enhanced microwave absorption properties of novel hierarchical heterostructures based on a Ni microsphere–CuO nano-rice core–shell composite. Physical Chemistry Chemical Physics, 2015, 17, 6044-6052.	2.8	109
24	Facile design of a ZnO nanorod–Ni core–shell composite with dual peaks to tune its microwave absorption properties. RSC Advances, 2017, 7, 9294-9302.	3.6	106
25	Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO ₂ hybrids. Dalton Transactions, 2015, 44, 15984-15993.	3.3	105
26	In situ synthesis of novel urchin-like ZnS/Ni ₃ S ₂ @Ni composite with a core–shell structure for efficient electromagnetic absorption. Journal of Materials Chemistry C, 2015, 3, 10862-10869.	5.5	103
27	A novel sponge-like 2D Ni/derivative heterostructure to strengthen microwave absorption performance. Physical Chemistry Chemical Physics, 2018, 20, 28623-28633.	2.8	101
28	Flexible PVDF/CNTs/Ni@CNTs composite films possessing excellent electromagnetic interference shielding and mechanical properties under heat treatment. Carbon, 2019, 155, 34-43.	10.3	99
29	Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO. Journal of Materials Chemistry C, 2018, 6, 7128-7140.	5.5	98
30	Quick Heat Dissipation in Absorption-Dominated Microwave Shielding Properties of Flexible Poly(vinylidene fluoride)/Carbon Nanotube/Co Composite Films with Anisotropy-Shaped Co (Flowers) Tj ETQq0 C	0 8gBT /0	ive øl øck 10 Tf
31	Lightweight porous Co ₃ O ₄ and Co/CoO nanofibers with tunable impedance match and configuration-dependent microwave absorption properties. CrystEngComm, 2017, 19, 6095-6106.	2.6	92
32	Fabrication and enhanced microwave absorption properties of Al ₂ O ₃ nanoflake-coated Ni core–shell composite microspheres. RSC Advances, 2014, 4, 57424-57429.	3.6	84
33	Flexible PVDF/carbon materials/Ni composite films maintaining strong electromagnetic wave shielding under cyclic microwave irradiation. Journal of Materials Chemistry C, 2020, 8, 500-509.	5.5	76
34	Symmetrical polyhedron-bowl Co/CoO with hexagonal plate to forward electromagnetic wave absorption ability. CrystEngComm, 2019, 21, 816-826.	2.6	74
35	Dependence of electromagnetic interference shielding ability of conductive polymer composite foams with hydrophobic properties on cellular structure. Journal of Materials Chemistry C, 2020, 8, 7401-7410.	5.5	70
36	Facile synthesis of crumpled ZnS net-wrapped Ni walnut spheres with enhanced microwave absorption properties. RSC Advances, 2015, 5, 9806-9814.	3.6	65

Βιάο Ζηδο

#	Article	IF	CITATIONS
37	1D Cu@Ni nanorods anchored on 2D reduced graphene oxide with interfacial engineering to enhance microwave absorption properties. CrystEngComm, 2017, 19, 6579-6587.	2.6	62
38	ZnS nanowall coated Ni composites: facile preparation and enhanced electromagnetic wave absorption. RSC Advances, 2014, 4, 61219-61225.	3.6	53
39	An impedance match method used to tune the electromagnetic wave absorption properties of hierarchical ZnO assembled by porous nanosheets. CrystEngComm, 2017, 19, 3640-3648.	2.6	51
40	High-Performance Joule Heating and Electromagnetic Shielding Properties of Anisotropic Carbon Scaffolds. ACS Applied Materials & Interfaces, 2021, 13, 29101-29112.	8.0	51
41	Highly Compressible Polymer Composite Foams with Thermal Heating-Boosted Electromagnetic Wave Absorption Abilities. ACS Applied Materials & Interfaces, 2020, 12, 50793-50802.	8.0	47
42	Facile synthesis and novel microwave electromagnetic properties of flower-like Ni structures by a solvothermal method. Journal of Materials Science: Materials in Electronics, 2014, 25, 3614-3621.	2.2	43
43	Co decorated polymer-derived SiCN ceramic aerogel composites with ultrabroad microwave absorption performance. Journal of Alloys and Compounds, 2020, 813, 152007.	5.5	40
44	Enhanced microwave absorption capabilities of Ni microspheres after coating with SnO2 nanoparticles. Journal of Materials Science: Materials in Electronics, 2015, 26, 5393-5399.	2.2	33
45	Insight into the Directional Thermal Transport of Hexagonal Boron Nitride Composites. ACS Applied Materials & Interfaces, 2019, 11, 41726-41735.	8.0	33
46	Tailoring Microwave Electromagnetic Responses in Ti ₃ C ₂ T _{<i>x</i>} MXene with Fe ₃ O ₄ Nanoparticle Decoration via a Solvothermal Method. Journal of Physical Chemistry C, 2021, 125, 19914-19924	3.1	33
47	Flexible PEBAX/graphene electromagnetic shielding composite films with a negative pressure effect of resistance for pressure sensors applications. RSC Advances, 2020, 10, 1535-1543.	3.6	29
48	Opportunities and challenges in microwave absorption of nickel–carbon composites. Physical Chemistry Chemical Physics, 2021, 23, 20795-20834.	2.8	29
49	Microwave absorption properties of CoNi nanoparticles anchored on the reduced grapheme oxide. Journal of Materials Science: Materials in Electronics, 2016, 27, 8408-8415.	2.2	28
50	Preparation and electromagnetic wave absorption properties of novel dendrite-like NiCu alloy composite. RSC Advances, 2015, 5, 42587-42590.	3.6	26
51	Viscoelastic and Magnetically Aligned Flaky Fe-Based Magnetorheological Elastomer Film for Wide-Bandwidth Electromagnetic Wave Absorption. Industrial & Engineering Chemistry Research, 2020, 59, 3425-3437.	3.7	26
52	Investigation on the growth mechanism of SiC whiskers during microwave synthesis. Physical Chemistry Chemical Physics, 2018, 20, 25799-25805.	2.8	25
53	Enhancement of electromagnetic interference shielding from the synergism between Cu@Ni nanorods and carbon materials in flexible composite films. Materials Advances, 2021, 2, 718-727.	5.4	20
54	Recyclable magnetic carbon foams possessing voltage-controllable electromagnetic shielding and oil/water separation. Carbon, 2022, 197, 570-578.	10.3	15

Βιάο Ζηλο

#	Article	IF	CITATIONS
55	Tailoring Microwave-Absorption Properties of Co x Ni y Alloy/RGO Nanocomposites with Tunable Atomic Ratios. Journal of Electronic Materials, 2017, 46, 2164-2171.	2.2	13
56	Ti ₃ C ₂ T _{<i>x</i>} /rGO aerogel towards high electromagnetic wave absorption and thermal resistance. CrystEngComm, 2022, 24, 4556-4563.	2.6	13
57	Investigation on heating behavior during the preparation of SiC crystals by microwave sintering. International Journal of Applied Ceramic Technology, 2017, 14, 880-888.	2.1	12
58	On the grinding performance of metal-bonded aggregated cBN grinding wheels based on open-pore structures. Ceramics International, 2021, 47, 19709-19715.	4.8	11
59	Light-weight and high-efficiency electromagnetic wave shielding properties based on waste straw porous carbon. Journal of Materials Science: Materials in Electronics, 2020, 31, 4963-4971.	2.2	10
60	Time-sensitivity for the preparation and microwave absorption properties of core–shell structured Ni/TiO2 composite microspheres. Journal of Materials Science: Materials in Electronics, 2015, 26, 8848-8853.	2.2	8
61	Solvothermal synthesis and electromagnetic absorption properties of pyramidal Ni superstructures. Journal of Materials Research, 2014, 29, 1431-1439.	2.6	7
62	On the grinding performance of alumina wheels in ultrasonic vibration–assisted grinding of hardened GCr15 steel. International Journal of Advanced Manufacturing Technology, 2022, 120, 1695-1706.	3.0	6
63	Investigation of the pore-size dependent microwave absorption properties of honeycomb SnO2. Journal of Materials Science: Materials in Electronics, 2021, 32, 25725-25734.	2.2	5
64	Dissolution kinetics of lead from a lead-oxide ore that consists mainly of cerussite by trichloroacetic acid and optimization of dissolution conditions. Separation Science and Technology, 2019, 54, 828-836.	2.5	3
65	Affine scale space: an affine invariant image structure to promote the detection of correspondences from stereo images. Neurocomputing, 2017, 252, 34-41.	5.9	0
66	AIFD Based 2D Image Registration to Multi-View Stereo Mapped 3D Models. Neural Processing Letters, 2018, 48, 1261-1279.	3.2	0