
## **Cristian Blanco-Tirado**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4143689/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Mass Balance and Compositional Analysis of Biomass Outputs from Cacao Fruits. Molecules, 2022, 27, 3717.                                                                                                                            | 1.7 | 5         |
| 2  | Molecular grafting of nanoparticles onto sisal fibers - adhesion to cementitious matrices and novel functionalities. Journal of Molecular Structure, 2021, 1234, 130171.                                                            | 1.8 | 5         |
| 3  | Effect of the Ionization Source on the Targeted Analysis of Nickel and Vanadyl Porphyrins in Crude<br>Oil. Energy & Fuels, 2021, 35, 14542-14552.                                                                                   | 2.5 | 4         |
| 4  | Perspectives in Nanocellulose for Crude Oil Recovery: A Minireview. Energy & Fuels, 2021, 35,<br>15381-15397.                                                                                                                       | 2.5 | 14        |
| 5  | Cellulose biosynthesis using simple sugars available in residual cacao mucilage exudate. Carbohydrate<br>Polymers, 2021, 274, 118645.                                                                                               | 5.1 | 9         |
| 6  | Nanocellulose as an inhibitor of water-in-crude oil emulsion formation. Fuel, 2020, 264, 116830.                                                                                                                                    | 3.4 | 24        |
| 7  | Influence of post-oxidation reactions on the physicochemical properties of TEMPO-oxidized cellulose nanofibers before and after amidation. Cellulose, 2020, 27, 1273-1288.                                                          | 2.4 | 23        |
| 8  | Amidated Cellulose Nanofibrils as Demulsifying Agents for a Natural Water-in-Heavy-Crude-Oil<br>Emulsion. Energy & Fuels, 2020, 34, 14012-14022.                                                                                    | 2.5 | 17        |
| 9  | Synthesis of cellulose nanofiber hydrogels from fique tow and Ag nanoparticles. Cellulose, 2020, 27, 9947-9961.                                                                                                                     | 2.4 | 9         |
| 10 | Asphaltene Structure Modifiers as a Novel Approach for Viscosity Reduction in Heavy Crude Oils.<br>Energy & Fuels, 2020, 34, 5251-5257.                                                                                             | 2.5 | 7         |
| 11 | Comprehensive Petroporphyrin Identification in Crude Oils Using Highly Selective Electron Transfer<br>Reactions in MALDI-FTICR-MS. Energy & Fuels, 2019, 33, 3899-3907.                                                             | 2.5 | 38        |
| 12 | Electron-Transfer Ionization of Nanoparticles, Polymers, Porphyrins, and Fullerenes Using<br>Synthetically Tunable α-Cyanophenylenevinylenes as UV MALDI-MS Matrices. ACS Applied Materials &<br>Interfaces, 2019, 11, 10975-10987. | 4.0 | 20        |
| 13 | Selective ionization by electron-transfer MALDI-MS of vanadyl porphyrins from crude oils. Fuel, 2018, 226, 103-111.                                                                                                                 | 3.4 | 29        |
| 14 | Isolation and characterization of cellulose nanofibrils from Colombian Fique decortication by-products. Carbohydrate Polymers, 2018, 189, 169-177.                                                                                  | 5.1 | 45        |
| 15 | Correlations between Molecular Composition and Adsorption, Aggregation, and Emulsifying<br>Behaviors of PetroPhase 2017 Asphaltenes and Their Thin-Layer Chromatography Fractions. Energy<br>& Fuels, 2018, 32, 2769-2780.          | 2.5 | 35        |
| 16 | Exploring the composition of raw and delignified Colombian fique fibers, tow and pulp. Cellulose, 2018, 25, 151-165.                                                                                                                | 2.4 | 40        |
| 17 | Molecular characterization of naphthenic acids from heavy crude oils using MALDI FT-ICR mass spectrometry. Fuel, 2018, 231, 126-133.                                                                                                | 3.4 | 21        |
| 18 | Separation of asphaltene-stabilized water in oil emulsions and immiscible oil/water mixtures using a<br>hydrophobic cellulosic membrane. Fuel, 2018, 231, 297-306.                                                                  | 3.4 | 32        |

CRISTIAN BLANCO-TIRADO

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Analysis of naphthenic acids by matrix assisted laser desorption ionization time of flight mass spectrometry. Fuel, 2017, 193, 168-177.                                                  | 3.4 | 19        |
| 20 | Facile cellulose nanofibrils amidation using a â€~one-pot' approach. Cellulose, 2017, 24, 717-730.                                                                                       | 2.4 | 22        |
| 21 | Oligo p-Phenylenevinylene Derivatives as Electron Transfer Matrices for UV-MALDI. Journal of the<br>American Society for Mass Spectrometry, 2017, 28, 2548-2560.                         | 1.2 | 13        |
| 22 | Exploring Occluded Compounds and Their Interactions with Asphaltene Networks Using<br>High-Resolution Mass Spectrometry. Energy & Fuels, 2016, 30, 4550-4561.                            | 2.5 | 65        |
| 23 | Improving compositional space accessibility in (+) APPI FT-ICR mass spectrometric analysis of crude oils by extrography and column chromatography fractionation. Fuel, 2016, 185, 45-58. | 3.4 | 42        |
| 24 | High Resolution Mass Spectrometric View of Asphaltene–SiO <sub>2</sub> Interactions. Energy &<br>Fuels, 2015, 29, 1323-1331.                                                             | 2.5 | 42        |
| 25 | Controlled synthesis of ZnO particles on the surface of natural cellulosic fibers: effect of concentration, heating and sonication. Cellulose, 2015, 22, 1841-1852.                      | 2.4 | 26        |
| 26 | Tracing the Compositional Changes of Asphaltenes after Hydroconversion and Thermal Cracking<br>Processes by High-Resolution Mass Spectrometry. Energy & Fuels, 2015, 29, 6330-6341.      | 2.5 | 58        |
| 27 | Biocomposite of nanostructured MnO2 and fique fibers for efficient dye degradation. Green Chemistry, 2013, 15, 2920.                                                                     | 4.6 | 87        |
| 28 | In situ synthesis of gold nanoparticles using fique natural fibers as template. Cellulose, 2012, 19,<br>1933-1943.                                                                       | 2.4 | 31        |