John H Golbeck

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4143480/john-h-golbeck-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

189 6,824 46 72 g-index

195 7,411 4.7 5.6 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
189	EPR of Type I photosynthetic reaction centers <i>Methods in Enzymology</i> , 2022 , 666, 413-450	1.7	
188	Acclimation of the photosynthetic apparatus to low light in a thermophilic Synechococcus sp. strain <i>Photosynthesis Research</i> , 2022 , 1	3.7	1
187	Structure of a monomeric photosystem II core complex from a cyanobacterium acclimated to far-red light reveals the functions of chlorophylls d and f. <i>Journal of Biological Chemistry</i> , 2021 , 101424	5.4	6
186	Primary charge separation within the structurally symmetric tetrameric ChlPPChl chlorophyll exciplex in photosystem I. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2021 , 217, 112154	6.7	8
185	Differential sensitivity to oxygen among the bacteriochlorophylls g in the type-I reaction centers of Heliobacterium modesticaldum. <i>Photochemical and Photobiological Sciences</i> , 2021 , 20, 747-759	4.2	1
184	Conserved residue PsaB-Trp673 is essential for high-efficiency electron transfer between the phylloquinones and the iron-sulfur clusters in Photosystem I. <i>Photosynthesis Research</i> , 2021 , 148, 161-18	8ð ⁷	
183	A dimeric chlorophyll electron acceptor differentiates type I from type II photosynthetic reaction centers. <i>IScience</i> , 2021 , 24, 102719	6.1	4
182	Two-dimensional HYSCORE spectroscopy reveals a histidine imidazole as the axial ligand to Chl in the M688H genetic variant of Photosystem I. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2021 , 1862, 148424	4.6	4
181	Liposome-based measurement of light-driven chloride transport kinetics of halorhodopsin. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183637	3.8	O
180	Symmetry breaking in photosystem I: ultrafast optical studies of variants near the accessory chlorophylls in the A- and B-branches of electron transfer cofactors. <i>Photochemical and Photobiological Sciences</i> , 2021 , 20, 1209-1227	4.2	О
179	Shedding Light on Primary Donors in Photosynthetic Reaction Centers. <i>Frontiers in Microbiology</i> , 2021 , 12, 735666	5.7	4
178	Two-dimensional Zn HYSCORE spectroscopy reveals that a Zn-bacteriochlorophyll aQdimer is the primary donor (P) in the type-1 reaction centers of Chloracidobacterium thermophilum. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 6457-6467	3.6	9
177	The structure of Photosystem I acclimated to far-red light illuminates an ecologically important acclimation process in photosynthesis. <i>Science Advances</i> , 2020 , 6, eaay6415	14.3	24
176	Evidence that chlorophyll f functions solely as an antenna pigment in far-red-light photosystem I from Fischerella thermalis PCC 7521. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2020 , 1861, 148184	4.6	12
175	Generating dihydrogen by tethering an [FeFe]hydrogenase via a molecular wire to the A/A sites of photosystem I. <i>Photosynthesis Research</i> , 2020 , 143, 155-163	3.7	5
174	Control of electron transfer by protein dynamics in photosynthetic reaction centers. <i>Critical Reviews in Biochemistry and Molecular Biology</i> , 2020 , 55, 425-468	8.7	3
173	Designing a modified clostridial 2[4Fe-4S] ferredoxin as a redox coupler to directly link photosystem I with a Pt nanoparticle. <i>Photosynthesis Research</i> , 2020 , 143, 165-181	3.7	3

172	Characterization of chlorophyll f synthase heterologously produced in Synechococcus sp. PCC 7002. <i>Photosynthesis Research</i> , 2019 , 140, 77-92	3.7	32
171	Energy transfer from chlorophyll f to the trapping center in naturally occurring and engineered Photosystem I complexes. <i>Photosynthesis Research</i> , 2019 , 141, 151-163	3.7	26
170	Reaction centers of the thermophilic microaerophile, Chloracidobacterium thermophilum (Acidobacteria) I: biochemical and biophysical characterization. <i>Photosynthesis Research</i> , 2019 , 142, 87-	1837	8
169	Multiple pathways of charge recombination revealed by the temperature dependence of electron transfer kinetics in cyanobacterial photosystem I. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2019 , 1860, 601-610	4.6	8
168	Structure and function of an unusual flavodoxin from the domain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 25917-25922	11.5	6
167	Engineered biosynthesis of bacteriochlorophyll g in Rhodobacter sphaeroides. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2018 , 1859, 501-509	4.6	14
166	Toward a mechanistic and physiological understanding of a ferredoxin:disulfide reductase from the domains Archaea and Bacteria. <i>Journal of Biological Chemistry</i> , 2018 , 293, 9198-9209	5.4	6
165	N photo-CIDNP MAS NMR analysis of reaction centers of Chloracidobacterium thermophilum. <i>Photosynthesis Research</i> , 2018 , 137, 295-305	3.7	14
164	Mutations in algal and cyanobacterial Photosystem I that independently affect the yield of initial charge separation in the two electron transfer cofactor branches. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2018 , 1859, 42-55	4.6	8
163	Presence of a [3Fe-4S] cluster in a PsaC variant as a functional component of the photosystem I electron transfer chain in Synechococcus sp. PCC 7002. <i>Photosynthesis Research</i> , 2018 , 136, 31-48	3.7	2
162	Expression, purification and characterization of an active C491G variant of ferredoxin sulfite reductase from Synechococcus elongatus PCC 7942. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2018 , 1859, 1096-1107	4.6	1
161	Electron-Phonon Coupling in Cyanobacterial Photosystem I. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 7943-7955	3.4	12
160	Light-Driven Chloride Transport Kinetics of Halorhodopsin. <i>Biophysical Journal</i> , 2018 , 115, 353-360	2.9	4
159	Ultrafast Energy Transfer Involving the Red Chlorophylls of Cyanobacterial Photosystem I Probed through Two-Dimensional Electronic Spectroscopy. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11631-11638	16.4	25
158	Improving extraction and post-purification concentration of membrane proteins. <i>Analyst, The</i> , 2018 , 143, 1378-1386	5	12
157	Critical evaluation of electron transfer kinetics in P-F/F, P-F, and P-A Photosystem I core complexes in liquid and in trehalose glass. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2018 , 1859, 1288-1301	4.6	25
156	PoreDesigner for tuning solute selectivity in a robust and highly permeable outer membrane pore. <i>Nature Communications</i> , 2018 , 9, 3661	17.4	36
155	BciD Is a Radical S-Adenosyl-l-methionine (SAM) Enzyme That Completes Bacteriochlorophyllide e Biosynthesis by Oxidizing a Methyl Group into a Formyl Group at C-7. <i>Journal of Biological Chemistry</i> , 2017 , 292, 1361-1373	5.4	20

154	Structure of a symmetric photosynthetic reaction center-photosystem. <i>Science</i> , 2017 , 357, 1021-1025	33.3	81
153	Effect of Dehydrated Trehalose Matrix on the Kinetics of Forward Electron Transfer Reactions in Photosystem I. <i>Zeitschrift Fur Physikalische Chemie</i> , 2017 , 231, 325-345	3.1	8
152	Zn2+-Inducible Expression Platform for Synechococcus sp. Strain PCC 7002 Based on the smtA Promoter/Operator and smtB Repressor. <i>Applied and Environmental Microbiology</i> , 2017 , 83,	4.8	10
151	Triplet Charge Recombination in Heliobacterial Reaction Centers Does Not Produce a Spin-Polarized EPR Spectrum. <i>Zeitschrift Fur Physikalische Chemie</i> , 2017 , 231, 593-607	3.1	5
150	Quantum yield measurements of light-induced Higeneration in a photosystem I-[FeFe]-Hilse nanoconstruct. <i>Photosynthesis Research</i> , 2016 , 127, 5-11	3.7	7
149	Biomimetic wiring and stabilization of photosynthetic membrane proteins with block copolymer interfaces. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 15457-15463	13	21
148	Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation. <i>Applied and Environmental Microbiology</i> , 2016 , 82, 5428-43	4.8	32
147	Elucidating the design principles of photosynthetic electron-transfer proteins by site-directed spin labeling EPR spectroscopy. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2016 , 1857, 548-556	4.6	O
146	Concentrating membrane proteins using ultrafiltration without concentrating detergents. <i>Biotechnology and Bioengineering</i> , 2016 , 113, 2122-30	4.9	7
145	Thermodynamics of the Electron Acceptors in Heliobacterium modesticaldum: An Exemplar of an Early Homodimeric Type I Photosynthetic Reaction Center. <i>Biochemistry</i> , 2016 , 55, 2358-70	3.2	23
144	The Effect of Bacteriochlorophyll g Oxidation on Energy and Electron Transfer in Reaction Centers from Heliobacterium modesticaldum. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 13714-25	3.4	13
143	Bacterial Nanowires of Shewanella Oneidensis MR-1 are Outer Membrane and Periplasmic Extensions of the Extracellular Electron Transport Components. <i>Biophysical Journal</i> , 2015 , 108, 368a	2.9	5
142	Electron transfer from the A1A and A1B sites to a tethered Pt nanoparticle requires the FeS clusters for suppression of the recombination channel. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2015 , 152, 325-34	6.7	4
141	The Presence of the IsiA-PSI Supercomplex Leads to Enhanced Photosystem I Electron Throughput in Iron-Starved Cells of Synechococcus sp. PCC 7002. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 13549-5	5 <i>9</i> ·4	16
140	Species-dependent alteration of electron transfer in the early stages of charge stabilization in Photosystem I. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2015 , 1847, 429-440	4.6	9
139	Light-mediated hydrogen generation in Photosystem I: attachment of a naphthoquinone-molecular wire-Pt nanoparticle to the A1A and A1B sites. <i>Biochemistry</i> , 2014 , 53, 2295-306	3.2	20
138	Two-dimensional protein crystals for solar energy conversion. Advanced Materials, 2014, 26, 7064-9	24	31
137	Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 12883-8	11.5	412

(2011-2014)

136	Molecular dynamics study of the primary charge separation reactions in Photosystem I: effect of the replacement of the axial ligands to the electron acceptor $A\square Biochimica$ Et $Biophysica$ Acta - $Bioenergetics$, 2014 , 1837, 1472-83	4.6	14
135	Vipp1 is essential for the biogenesis of Photosystem I but not thylakoid membranes in Synechococcus sp. PCC 7002. <i>Journal of Biological Chemistry</i> , 2014 , 289, 15904-14	5.4	41
134	ChlR protein of Synechococcus sp. PCC 7002 is a transcription activator that uses an oxygen-sensitive [4Fe-4S] cluster to control genes involved in pigment biosynthesis. <i>Journal of Biological Chemistry</i> , 2014 , 289, 16624-39	5.4	18
133	Evidence that histidine forms a coordination bond to the A(0A) and A(0B) chlorophylls and a second H-bond to the A(1A) and A(1B) phylloquinones in M688H(PsaA) and M668H(PsaB) variants of Synechocystis sp. PCC 6803. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2014 , 1837, 1362-75	4.6	27
132	Temporal and spectral characterization of the photosynthetic reaction center from Heliobacterium modesticaldum. <i>Photosynthesis Research</i> , 2013 , 116, 1-9	3.7	23
131	The field-dependence of the solid-state photo-CIDNP effect in two states of heliobacterial reaction centers. <i>Photosynthesis Research</i> , 2013 , 117, 461-9	3.7	4
130	Metals in bioenergetics and biomimetics systems. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2013 , 1827, 869-70	4.6	2
129	The structure and function of quinones in biological solar energy transduction: a cyclic voltammetry, EPR, and hyperfine sub-level correlation (HYSCORE) spectroscopy study of model naphthoquinones. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 7210-20	3.4	17
128	Spectral resolution of the primary electron acceptor A0 in Photosystem I. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 3380-6	3.4	18
127	Isolation and characterization of homodimeric type-I reaction center complex from Candidatus Chloracidobacterium thermophilum, an aerobic chlorophototroph. <i>Journal of Biological Chemistry</i> , 2012 , 287, 5720-32	5.4	34
126	Incorporation of a high potential quinone reveals that electron transfer in Photosystem I becomes highly asymmetric at low temperature. <i>Photochemical and Photobiological Sciences</i> , 2012 , 11, 946-56	4.2	34
125	The Evolution of Type I Reaction Centers: The Response to Oxygenic Photosynthesis. <i>Advances in Photosynthesis and Respiration</i> , 2012 , 285-316	1.7	12
124	The FX iron-sulfur cluster serves as the terminal bound electron acceptor in heliobacterial reaction centers. <i>Photosynthesis Research</i> , 2012 , 111, 285-90	3.7	18
123	Purification of the photosynthetic reaction center from Heliobacterium modesticaldum. <i>Photosynthesis Research</i> , 2012 , 111, 291-302	3.7	34
122	Effect of hydrogen bond strength on the redox properties of phylloquinones: a two-dimensional hyperfine sublevel correlation spectroscopy study of photosystem I. <i>Biochemistry</i> , 2011 , 50, 3495-501	3.2	18
121	Wiring photosystem I for electron transfer to a tethered redox dye. <i>Energy and Environmental Science</i> , 2011 , 4, 2428	35.4	5
120	Alteration of the H-bond to the A(1A) phylloquinone in Photosystem I: influence on the kinetics and energetics of electron transfer. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 1751-9	3.4	23
119	Ultrastructural analysis and identification of envelope proteins of "Candidatus Chloracidobacterium thermophilum" chlorosomes. <i>Journal of Bacteriology</i> , 2011 , 193, 6701-11	3.5	35

118	Solar hydrogen-producing bionanodevice outperforms natural photosynthesis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 20988-91	11.5	138
117	Chapter 17:Wired Reaction Centers. RSC Energy and Environment Series, 2011, 464-505	0.6	2
116	The assembly of a multisubunit photosynthetic membrane protein complex: a site-specific spin labeling EPR spectroscopic study of the PsaC subunit in photosystem I. <i>Biochemistry</i> , 2010 , 49, 2398-40)8 ^{3.2}	8
115	Wiring an [FeFe]-hydrogenase with photosystem I for light-induced hydrogen production. Biochemistry, 2010 , 49, 10264-6	3.2	109
114	Wiring photosystem I for direct solar hydrogen production. <i>Biochemistry</i> , 2010 , 49, 404-14	3.2	121
113	Alteration of the Axial Met Ligand to Electron Acceptor A0 in Photosystem I: An Investigation of Electron Transfer at Different Temperatures by Multifrequency Time-Resolved and CW EPR. <i>Applied Magnetic Resonance</i> , 2010 , 37, 103-121	0.8	7
112	Incorporation of 2,3-Disubstituted-1,4-Naphthoquinones into the A1 Binding Site of Photosystem I Studied by EPR and ENDOR Spectroscopy. <i>Applied Magnetic Resonance</i> , 2010 , 37, 65-83	0.8	14
111	Alteration of the Axial Met Ligand to Electron Acceptor A0 in Photosystem I: Effect on the Generation of P 1-700 A 1 Radical Pairs as Studied by W-band Transient EPR. <i>Applied Magnetic Resonance</i> , 2010 , 37, 85-102	0.8	28
110	The bound iron-sulfur clusters of type-I homodimeric reaction centers. <i>Photosynthesis Research</i> , 2010 , 104, 333-46	3.7	21
109	Identification and characterization of PshBII, a second FA/FB-containing polypeptide in the photosynthetic reaction center of Heliobacterium modesticaldum. <i>Photosynthesis Research</i> , 2010 , 104, 293-303	3.7	18
108	Protein-cofactor interactions in bioenergetic complexes: the role of the A1A and A1B phylloquinones in Photosystem I. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2009 , 1787, 1057-88	4.6	110
107	Breaking biological symmetry in membrane proteins: the asymmetrical orientation of PsaC on the pseudo-C2 symmetric Photosystem I core. <i>Cellular and Molecular Life Sciences</i> , 2009 , 66, 1257-70	10.3	15
106	Role of the hydrogen bond from Leu722 to the A1A phylloquinone in photosystem I. <i>Biochemistry</i> , 2009 , 48, 3315-24	3.2	27
105	Understanding of the binding interface between PsaC and the PsaA/PsaB heterodimer in photosystem I. <i>Biochemistry</i> , 2009 , 48, 5405-16	3.2	23
104	Thermodynamics of charge separation of photosystem I in the menA and menB null mutants of Synechocystis sp. PCC 6803 determined by pulsed photoacoustics. <i>Biochemistry</i> , 2009 , 48, 1829-37	3.2	9
103	Removal of the PsaF polypeptide biases electron transfer in favor of the PsaB branch of cofactors in Triton X-100 photosystem I complexes from Synechococcus sp. PCC 7002. <i>Photochemistry and Photobiology</i> , 2008 , 84, 1371-80	3.6	7
102	Unifying principles in homodimeric type I photosynthetic reaction centers: properties of PscB and the FA, FB and FX iron-sulfur clusters in green sulfur bacteria. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2008 , 1777, 1535-44	4.6	24
101	Photosystem I/molecular wire/metal nanoparticle bioconjugates for the photocatalytic production of H2. <i>Journal of the American Chemical Society</i> , 2008 , 130, 6308-9	16.4	121

(2004-2008)

100	Synechococcus sp. PCC 7002 rapidly and efficiently transfers [4Fe-4S] clusters to apo-PsaC in vitro. Journal of Biological Chemistry, 2008 , 283, 28426-35	5.4	33	
99	Transient EPR Studies of In Vivo Uptake of Substituted Anthraquinones by Photosystem I in Phylloquinone Biosynthetic Pathway Mutants of Synechocystis sp. PCC 6803 2008 , 227-230		1	
98	Identification and characterization of PshB, the dicluster ferredoxin that harbors the terminal electron acceptors F(A) and F(B) in Heliobacterium modesticaldum. <i>Biochemistry</i> , 2007 , 46, 2530-6	3.2	28	
97	Chemical rescue of a site-modified ligand to a [4Fe-4S] cluster in PsaC, a bacterial-like dicluster ferredoxin bound to Photosystem I. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2007 , 1767, 712-24	4.6	33	
96	A relationship between amide hydrogen bond strength and quinone reduction potential: implications for photosystem I and bacterial reaction center quinone function. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2007 , 17, 4891-4	2.9	17	
95	Heliobacterial photosynthesis. <i>Photosynthesis Research</i> , 2007 , 92, 35-53	3.7	64	
94	SufR coordinates two [4Fe-4S]2+, 1+ clusters and functions as a transcriptional repressor of the sufBCDS operon and an autoregulator of sufR in cyanobacteria. <i>Journal of Biological Chemistry</i> , 2007 , 282, 31909-19	5.4	62	
93	Contributions of the protein environment to the midpoint potentials of the A1 phylloquinones and the Fx iron-sulfur cluster in photosystem I. <i>Biochemistry</i> , 2007 , 46, 10804-16	3.2	25	
92	Regulatory roles for IscA and SufA in iron homeostasis and redox stress responses in the cyanobacterium Synechococcus sp. strain PCC 7002. <i>Journal of Bacteriology</i> , 2006 , 188, 3182-91	3.5	77	
91	Electrostatic influence of PsaC protein binding to the PsaA/PsaB heterodimer in photosystem I. <i>Biophysical Journal</i> , 2006 , 90, 1081-9	2.9	24	
90	Identification of FX in the heliobacterial reaction center as a [4Fe-4S] cluster with an $S = 3/2$ ground spin state. <i>Biochemistry</i> , 2006 , 45, 6756-64	3.2	41	
89	Assembly of the Bound IronBulfur Clusters in Photosystem I 2006 , 529-548		8	
88	Molecular Interactions of the Stromal Subunit PsaC with the PsaA/PsaB Heterodimer 2006 , 79-98		2	
87	Resolution and reconstitution of a bound Fe-S protein from the photosynthetic reaction center of Heliobacterium modesticaldum. <i>Biochemistry</i> , 2005 , 44, 9950-60	3.2	28	
86	Asymmetric electron transfer in cyanobacterial Photosystem I: charge separation and secondary electron transfer dynamics of mutations near the primary electron acceptor A0. <i>Biophysical Journal</i> , 2005 , 88, 1238-49	2.9	81	
85	Biochemical and biophysical characterization of photosystem I from phytoene desaturase and zeta-carotene desaturase deletion mutants of Synechocystis Sp. PCC 6803: evidence for PsaA- and PsaB-side electron transport in cyanobacteria. <i>Journal of Biological Chemistry</i> , 2005 , 280, 20030-41	5.4	61	
84	Recruitment of a foreign quinone into the A1 site of photosystem I. Characterization of a menB rubA double deletion mutant in Synechococcus sp. PCC 7002 devoid of FX, FA, and FB and containing plastoquinone or exchanged 9,10-anthraquinone. <i>Journal of Biological Chemistry</i> , 2005 ,	5.4	30	
83	280, 12371-81 Photosystem I: FX, FA, and FB IronBulfur Clusters 2004 , 348-356		1	

82	The sufR gene (sll0088 in Synechocystis sp. strain PCC 6803) functions as a repressor of the sufBCDS operon in iron-sulfur cluster biogenesis in cyanobacteria. <i>Journal of Bacteriology</i> , 2004 , 186, 956-67	3.5	81
81	Evidence for asymmetric electron transfer in cyanobacterial photosystem I: analysis of a methionine-to-leucine mutation of the ligand to the primary electron acceptor A0. <i>Biochemistry</i> , 2004 , 43, 4741-54	3.2	93
80	Removal of PsaF alters forward electron transfer in photosystem I: evidence for fast reoxidation of QK-A in subunit deletion mutants of Synechococcus sp. PCC 7002. <i>Biochemistry</i> , 2004 , 43, 1264-75	3.2	23
79	Asymmetric Hydrogen-Bonding of the Quinone Cofactor in Photosystem I Probed by 13C-Labeled Naphthoquinones[] <i>Journal of Physical Chemistry B</i> , 2004 , 108, 9439-9448	3.4	46
78	Suppressor mutations in the study of photosystem I biogenesis: sll0088 is a previously unidentified gene involved in reaction center accumulation in Synechocystis sp. strain PCC 6803. <i>Journal of Bacteriology</i> , 2003 , 185, 3878-87	3.5	19
77	The binding of cofactors to photosystem I analyzed by spectroscopic and mutagenic methods. <i>Annual Review of Biophysics and Biomolecular Structure</i> , 2003 , 32, 237-56		44
76	Assembly of protein subunits within the stromal ridge of photosystem I. Structural changes between unbound and sequentially PS I-bound polypeptides and correlated changes of the magnetic properties of the terminal iron sulfur clusters. <i>Journal of Molecular Biology</i> , 2003 , 327, 671-97	6.5	56
75	The menD and menE homologs code for 2-succinyl-6-hydroxyl-2,4-cyclohexadiene-1-carboxylate synthase and O-succinylbenzoic acid-CoA synthase in the phylloquinone biosynthetic pathway of Synechocystis sp. PCC 6803. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2003 , 1557, 67-76	4.6	28
74	Electron transfer in cyanobacterial photosystem I: I. Physiological and spectroscopic characterization of site-directed mutants in a putative electron transfer pathway from A0 through A1 to FX. <i>Journal of Biological Chemistry</i> , 2003 , 278, 27864-75	5.4	70
73	Electron transfer in cyanobacterial photosystem I: II. Determination of forward electron transfer rates of site-directed mutants in a putative electron transfer pathway from A0 through A1 to FX. <i>Journal of Biological Chemistry</i> , 2003 , 278, 27876-87	5.4	87
72	Assembly of photosystem I. II. Rubredoxin is required for the in vivo assembly of F(X) in Synechococcus sp. PCC 7002 as shown by optical and EPR spectroscopy. <i>Journal of Biological Chemistry</i> , 2002 , 277, 20355-66	5.4	80
71	Solution structure of the unbound, oxidized Photosystem I subunit PsaC, containing [4Fe-4S] clusters F(A) and F(B): a conformational change occurs upon binding to photosystem I. <i>Journal of Biological Inorganic Chemistry</i> , 2002 , 7, 461-72	3.7	29
70	Insertional inactivation of the menG gene, encoding 2-phytyl-1,4-naphthoquinone methyltransferase of Synechocystis sp. PCC 6803, results in the incorporation of 2-phytyl-1,4-naphthoquinone into the A(1) site and alteration of the equilibrium constant between	3.2	55
69	Assembly of photosystem I. I. Inactivation of the rubA gene encoding a membrane-associated rubredoxin in the cyanobacterium Synechococcus sp. PCC 7002 causes a loss of photosystem I activity. <i>Journal of Biological Chemistry</i> , 2002 , 277, 20343-54	5.4	103
68	Modeling of the P700+ charge recombination kinetics with phylloquinone and plastoquinone-9 in the A1 site of photosystem I. <i>Biophysical Journal</i> , 2002 , 83, 2885-97	2.9	48
67	Recruitment of a foreign quinone into the A1 site of photosystem I. In vivo replacement of plastoquinone-9 by media-supplemented naphthoquinones in phylloquinone biosynthetic pathway mutants of Synechocystis sp. PCC 6803. <i>Journal of Biological Chemistry</i> , 2001 , 276, 39512-21	5.4	55
66	Photoinduced transient absorbance spectra of P840/P840(+) and the FMO protein in reaction centers of Chlorobium vibrioforme. <i>Biophysical Journal</i> , 2001 , 81, 382-93	2.9	6
65	Iron-sulfur clusters in type I reaction centers. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2001 , 1507, 139-60	4.6	104

64	Electron transfer may occur in the chlorosome envelope: the CsmI and CsmJ proteins of chlorosomes are 2Fe-2S ferredoxins. <i>Biochemistry</i> , 2001 , 40, 464-73	3.2	32
63	Paramagnetic 1H NMR spectroscopy of the reduced, unbound photosystem I subunit PsaC: sequence-specific assignment of contact-shifted resonances and identification of mixed- and equal-valence Fe-Fe pairs in [4Fe-4S] centers FA- and FB <i>Journal of Biological Inorganic Chemistry</i> ,	3.7	20
62	Recruitment of a foreign quinone into the A(1) site of photosystem I. I. Genetic and physiological characterization of phylloquinone biosynthetic pathway mutants in Synechocystis sp. pcc 6803. Journal of Biological Chemistry, 2000, 275, 8523-30	5.4	111
61	Recruitment of a foreign quinone into the A(1) site of photosystem I. II. Structural and functional characterization of phylloquinone biosynthetic pathway mutants by electron paramagnetic resonance and electron-nuclear double resonance spectroscopy. <i>Journal of Biological Chemistry</i> ,	5.4	76
60	A kinetic assessment of the sequence of electron transfer from F(X) to F(A) and further to F(B) in photosystem I: the value of the equilibrium constant between F(X) and F(A). <i>Biophysical Journal</i> , 2000 , 78, 363-72	2.9	43
59	The bound electron acceptors in green sulfur bacteria: resolution of the g-tensor for the F(X) iron-sulfur cluster in Chlorobium tepidum. <i>Biophysical Journal</i> , 2000 , 78, 3160-9	2.9	21
58	Recruitment of a foreign quinone into the A1 site of photosystem I. Altered kinetics of electron transfer in phylloquinone biosynthetic pathway mutants studied by time-resolved optical, EPR, and electrometric techniques. <i>Journal of Biological Chemistry</i> , 2000 , 275, 23429-38	5.4	78
57	Photosystem I is indispensable for photoautotrophic growth, CO2 fixation, and H2 photoproduction in Chlamydomonas reinhardtii. <i>Journal of Biological Chemistry</i> , 1999 , 274, 10466-73	5.4	53
56	The cysteine-proximal aspartates in the Fx-binding niche of photosystem I. Effect of alanine and lysine replacements on photoautotrophic growth, electron transfer rates, single-turnover flash efficiency, and EPR spectral properties. <i>Journal of Biological Chemistry</i> , 1999 , 274, 9993-10001	5.4	11
55	A comparative analysis of the spin state distribution of in vitro and in vivo mutants of PsaC. A biochemical argument for the sequence of electron transfer in Photosystem I as FX -lFA -lFB -l ferredoxin/flavodoxin. <i>Photosynthesis Research</i> , 1999 , 61, 107-144	3.7	60
54	Location of the iron-sulfur clusters FA and FB in photosystem I: an electron paramagnetic resonance study of spin relaxation enhancement of P700+. <i>Biochemistry</i> , 1999 , 38, 13210-5	3.2	18
53	Electrometrical study of electron transfer from the terminal FA/FB iron-sulfur clusters to external acceptors in photosystem I. <i>FEBS Letters</i> , 1999 , 462, 421-4	3.8	12
52	Structure and properties in solution of PsaD, an extrinsic polypeptide of photosystem I. <i>FEBS Journal</i> , 1998 , 255, 309-16		16
51	Electrogenicity accompanies photoreduction of the iron-sulfur clusters F(A) and F(B) in photosystem I. <i>FEBS Letters</i> , 1998 , 431, 219-23	3.8	16
50	Menaquinone-7 in the reaction center complex of the green sulfur bacterium Chlorobium vibrioforme functions as the electron acceptor A1. <i>Biochemistry</i> , 1998 , 37, 3237-42	3.2	37
49	PsaC subunit of photosystem I is oriented with iron-sulfur cluster F(B) as the immediate electron donor to ferredoxin and flavodoxin. <i>Biophysical Journal</i> , 1998 , 74, 2029-35	2.9	57
48	Deletion of the PsaF Polypeptide Modifies the Environment of the Redox-Active Phylloquinone (A1). Evidence for Unidirectionality of Electron Transfer in Photosystem I. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 8288-8299	3.4	65
47	The eight-amino acid internal loop of PSI-C mediates association of low molecular mass iron-sulfur proteins with the P700-FX core in photosystem I. <i>Journal of Biological Chemistry</i> , 1998 , 273, 18778-83	5.4	10

46	[7] Comparison of in Vitro and in Vivo mutants of PsaC in photosystem I: Protocols for mutagenesis and techniques for analysis. <i>Methods in Enzymology</i> , 1998 , 297, 95-123	1.7	3
45	Chemical Rescue of Site-Modified Ligands to the Iron-Sulfur Clusters of Psac In Photosystem I 1998 , 65	59-662	
44	Strains of synechocystis sp. PCC 6803 with altered PsaC. I. Mutations incorporated in the cysteine ligands of the two [4Fe-4S] clusters FA and FB of photosystem I. <i>Journal of Biological Chemistry</i> , 1997 , 272, 8032-9	5.4	23
43	Strains of Synechocystis sp. PCC 6803 with altered PsaC. II. EPR and optical spectroscopic properties of FA and FB in aspartate, serine, and alanine replacements of cysteines 14 and 51. <i>Journal of Biological Chemistry</i> , 1997 , 272, 8040-9	5.4	21
42	Electron Transfer Quenching and Photoinduced EPR of Hypericin and the Ciliate Photoreceptor Stentorin <i>Journal of Physical Chemistry A</i> , 1997 , 101, 366-372	2.8	27
41	Redox titration of two [4Fe-4S] clusters in the photosynthetic reaction center from the anaerobic green sulfur bacterium Chlorobium vibrioforme. <i>FEBS Journal</i> , 1997 , 244, 454-61		17
40	Reconstitution of barley photosystem I with modified PSI-C allows identification of domains interacting with PSI-D and PSI-A/B. <i>Journal of Biological Chemistry</i> , 1996 , 271, 8996-9001	5.4	45
39	Mutational analysis of photosystem I polypeptides. Role of PsaD and the lysyl 106 residue in the reductase activity of the photosystem I. <i>Journal of Biological Chemistry</i> , 1996 , 271, 11772-80	5.4	48
38	Modified ligands to FA and FB in photosystem I. Proposed chemical rescue of a [4Fe-4S] cluster with an external thiolate in alanine, glycine, and serine mutants of PsaC. <i>Journal of Biological Chemistry</i> , 1996 , 271, 31135-44	5.4	26
37	Spectral and kinetic characterization of electron acceptor A1 in a Photosystem I core devoid of iron-sulfur centers F X, F B and F A. <i>Photosynthesis Research</i> , 1995 , 45, 183-93	3.7	45
36	Reconstitution of iron-sulfur center FB results in complete restoration of NADP (+) photoreduction in Hg-treated Photosystem I complexes from Synechococcus sp. PCC 6301. <i>Photosynthesis Research</i> , 1995 , 46, 249-55	3.7	55
35	Absence of PsaC subunit allows assembly of photosystem I core but prevents the binding of PsaD and PsaE in Synechocystis sp. PCC6803. <i>Plant Molecular Biology</i> , 1995 , 29, 331-42	4.6	64
34	Evidence for a mixed-ligand [4Fe-4S] cluster in the C14D mutant of PsaC. Altered reduction potentials and EPR spectral properties of the FA and FB clusters on rebinding to the P700-FX core. <i>Biochemistry</i> , 1995 , 34, 7861-8	3.2	45
33	Modified ligands to FA and FB in photosystem I. I. Structural constraints for the formation of iron-sulfur clusters in free and rebound PsaC. <i>Journal of Biological Chemistry</i> , 1995 , 270, 28108-17	5.4	40
32	Modified ligands to FA and FB in photosystem I. II. Characterization of a mixed ligand [4Fe-4S] cluster in the C51D mutant of PsaC upon rebinding to P700-Fx cores. <i>Journal of Biological Chemistry</i> , 1995 , 270, 28118-25	5.4	33
31	Iron-sulfur centers in the photosynthetic reaction center complex fromChlorobium vibrioforme. Differences from and similarities to the iron-sulfur centers in Photosystem I. <i>Photosynthesis Research</i> , 1994 , 41, 105-14	3.7	32
30	Electron transfer from the acceptor A1 to the iron-sulfur centers in photosystem I as studied by transient EPR spectroscopy. <i>Biochemistry</i> , 1994 , 33, 11789-97	3.2	86
29	Characterization of the [3Fe-4S] and [4Fe-4S] clusters in unbound PsaC mutants C14D and C51D. Midpoint potentials of the single [4Fe-4S] clusters are identical to FA and FB in bound PsaC of photosystem I. <i>Biochemistry</i> , 1993 , 32, 8251-8	3.2	39

[1986-1993]

28	of [3Fe-4S] and [4Fe-4S] clusters in Fx. A mixed-ligand [4Fe-4S] cluster is capable of electron transfer to FA and FB. <i>Biochemistry</i> , 1993 , 32, 4411-9	3.2	45
27	The structure of photosystem I. Current Opinion in Structural Biology, 1993, 3, 508-514	8.1	37
26	Charge recombination between P700+ and A1- occurs directly to the ground state of P700 in a photosystem I core devoid of FX, FB, and FA. <i>Biochemistry</i> , 1993 , 32, 849-57	3.2	46
25	Site-directed conversion of a cysteine to aspartate leads to the assembly of a [3Fe-4S] cluster in PsaC of photosystem I. The photoreduction of FA is independent of FB. <i>Biochemistry</i> , 1992 , 31, 5093-9	3.2	111
24	Polypeptide composition of the Photosystem I complex and the Photosystem I core protein from Synechococcus sp. PCC 6301. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 1991 , 1059, 215-25	4.6	61
23	Reconstitution of the iron-sulfur clusters in the isolated FA/FB protein: EPR spectral characterization of same-species and cross-species Photosystem I complexes. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 1991 , 1056, 139-148	4.6	38
22	PsaD is required for the stable binding of PsaC to the photosystem I core protein of Synechococcus sp. PCC 6301. <i>Biochemistry</i> , 1991 , 30, 7863-72	3.2	171
21	Photosystem I 1991 , 83-177		210
20	Characterization of a photosystem I core containing P700 and intermediate electron acceptor A1. <i>Biochemistry</i> , 1990 , 29, 6545-50	3.2	22
19	Reconstitution of electron transport in photosystem I with PsaC and PsaD proteins expressed in Escherichia coli. <i>FEBS Letters</i> , 1990 , 276, 175-80	3.8	71
18	Spectral hole burning of the primary electron donor state of Photosystem I. <i>Photosynthesis Research</i> , 1989 , 22, 233-46	3.7	42
17	A Māsbauer analysis of the low-potential iron-sulfur center in photosystem I: spectroscopic evidence that FX is a [4Fe-4S] cluster. <i>Biochemistry</i> , 1989 , 28, 8980-3	3.2	38
16	EXAFS structural study of FX, the low-potential Fe-S center in photosystem I. <i>Biochemistry</i> , 1989 , 28, 8056-9	3.2	37
15	Purification and properties of the intact P-700 and Fx-containing Photosystem I core protein. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 1989 , 973, 324-32	4.6	126
14	Isolation of the intact photosystem I reaction center core containing P700 and iron-sulfur center FX. <i>FEBS Letters</i> , 1988 , 228, 268-272	3.8	78
13	Reconstitution of the photosystem I complex from the P700 and Fx-containing reaction center core protein and the FA/FB polypeptide. <i>FEBS Letters</i> , 1988 , 240, 9-14	3.8	48
12	Light-induced charge separation across the photosynthetic membrane: a proposed structure for the photosystem I reaction center. <i>Journal of Membrane Science</i> , 1987 , 33, 151-168	9.6	15
11	3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Activity in Ochromonas malhamensis: A System to Study the Relationship between Enzyme Activity and Rate of Steroid Biosynthesis. <i>Plant Physiology</i> , 1986 , 82, 523-7	6.6	19

10	Site of salicylaldoxime interaction with photosystem II. <i>Photosynthesis Research</i> , 1985 , 6, 371-80	3.7	6
9	Hydroxylation of biphenyl by Aspergillus parasiticus: Approaches to yield improvment in fermenter cultures. <i>Biotechnology and Bioengineering</i> , 1985 , 27, 1395-402	4.9	18
8	The hydroxylation of biphenyl by Aspergillus toxicarius: Conditions for a bench scale fermentation process. <i>Biotechnology and Bioengineering</i> , 1984 , 26, 434-41	4.9	12
7	Spinach Thylakoid Polyphenol Oxidase : ISOLATION, ACTIVATION, AND PROPERTIES OF THE NATIVE CHLOROPLAST ENZYME. <i>Plant Physiology</i> , 1981 , 67, 977-84	6.6	146
6	[12] Subchloroplast particle enriched in P700 and iron-sulfur protein. <i>Methods in Enzymology</i> , 1980 , 69, 129-141	1.7	10
5	Mechanism of Linolenic Acid-induced Inhibition of Photosynthetic Electron Transport. <i>Plant Physiology</i> , 1980 , 65, 707-13	6.6	49
5		6.6 4.1	49
	Physiology, 1980, 65, 707-13 Action of salicylaldoxime on electron transport reactions, fluorescence yield, and light-induced field changes in spinach chloroplasts. A new mode of inhibition in photosystem II. Archives of		
4	Physiology, 1980, 65, 707-13 Action of salicylaldoxime on electron transport reactions, fluorescence yield, and light-induced field changes in spinach chloroplasts. A new mode of inhibition in photosystem II. Archives of Biochemistry and Biophysics, 1980, 202, 458-66 Isolation and characterization of a subchloroplast particle enriched in iron-sulfur protein and P700.	4.1	4