JérÃ′me D Robin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/414329/publications.pdf

Version: 2024-02-01

28 papers 1,213 citations

16 h-index 25 g-index

31 all docs

31 docs citations

times ranked

31

1883 citing authors

#	Article	IF	CITATIONS
1	Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances. Genes and Development, 2014, 28, 2464-2476.	5.9	238
2	Regulation of the Human Telomerase Gene TERT by Telomere Position Effect—Over Long Distances (TPE-OLD): Implications for Aging and Cancer. PLoS Biology, 2016, 14, e2000016.	5.6	140
3	Comparison of DNA Quantification Methods for Next Generation Sequencing. Scientific Reports, 2016, 6, 24067.	3.3	104
4	Quantitative telomerase enzyme activity determination using droplet digital PCR with single cell resolution. Nucleic Acids Research, 2014, 42, e104-e104.	14.5	102
5	Telomere position effect regulates DUX4 in human facioscapulohumeral muscular dystrophy. Nature Structural and Molecular Biology, 2013, 20, 671-678.	8.2	95
6	<i>SORBS2</i> transcription is activated by telomere position effect–over long distance upon telomere shortening in muscle cells from patients with facioscapulohumeral dystrophy. Genome Research, 2015, 25, 1781-1790.	5.5	71
7	NOVA1 regulates hTERT splicing and cell growth in non-small cell lung cancer. Nature Communications, 2018, 9, 3112.	12.8	63
8	Bring It to an End: Does Telomeres Size Matter?. Cells, 2019, 8, 30.	4.1	56
9	Establishment of clonal myogenic cell lines from severely affected dystrophic muscles - CDK4 maintains the myogenic population. Skeletal Muscle, 2011, 1, 12.	4.2	54
10	NOVA1 directs PTBP1 to hTERT pre-mRNA and promotes telomerase activity in cancer cells. Oncogene, 2019, 38, 2937-2952.	5.9	42
11	SMCHD1 is involved in <i>de novo</i> methylation of the <i>DUX4</i> encoding D4Z4 macrosatellite. Nucleic Acids Research, 2019, 47, 2822-2839.	14.5	39
12	Multilineage Differentiation for Formation of Innervated Skeletal Muscle Fibers from Healthy and Diseased Human Pluripotent Stem Cells. Cells, 2020, 9, 1531.	4.1	34
13	Mitochondrial function in skeletal myofibers is controlled by a TRF2â€SIRT3 axis over lifetime. Aging Cell, 2020, 19, e13097.	6.7	31
14	Physiological and Pathological Aging Affects Chromatin Dynamics, Structure and Function at the Nuclear Edge. Frontiers in Genetics, 2016, 7, 153.	2.3	28
15	Deciphering the complexity of the 4q and 10q subtelomeres by molecular combing in healthy individuals and patients with facioscapulohumeral dystrophy. Journal of Medical Genetics, 2019, 56, 590-601.	3.2	24
16	Short-Pulse Lasers: A Versatile Tool in Creating Novel Nano-/Micro-Structures and Compositional Analysis for Healthcare and Wellbeing Challenges. Nanomaterials, 2021, 11, 712.	4.1	19
17	Methylation hotspots evidenced by deep sequencing in patients with facioscapulohumeral dystrophy and mosaicism. Neurology: Genetics, 2019, 5, e372.	1.9	16
18	Analysis of the 4q35 chromatin organization reveals distinct long-range interactions in patients affected with Facio-Scapulo-Humeral Dystrophy. Scientific Reports, 2019, 9, 10327.	3.3	12

#	Article	IF	CITATIONS
19	Facioscapulohumeral dystrophy weakened sarcomeric contractility is mimicked in induced pluripotent stem cellsâ€derived innervated muscle fibres. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 621-635.	7.3	11
20	Isolation and Immortalization of Patient-derived Cell Lines from Muscle Biopsy for Disease Modeling. Journal of Visualized Experiments, 2015, , 52307.	0.3	8
21	<tt>TADeus2</tt> : aÂweb server facilitating the clinical diagnosis by pathogenicity assessment of structural variations disarranging 3D chromatin structure. Nucleic Acids Research, 2022, 50, W744-W752.	14.5	7
22	AKT Signaling Modifies the Balance between Cell Proliferation and Migration in Neural Crest Cells from Patients Affected with Bosma Arhinia and Microphthalmia Syndrome. Biomedicines, 2021, 9, 751.	3.2	5
23	miR-376a-3p and miR-376b-3p overexpression in Hutchinson-Gilford progeria fibroblasts inhibits cell proliferation and induces premature senescence. IScience, 2022, 25, 103757.	4.1	5
24	Higher-Order Chromatin Organization in Diseases: From Chromosomal Position Effect to Phenotype Variegation., 2017,, 73-92.		4
25	Facioscapulohumeral muscular dystrophy. Rare Diseases (Austin, Tex), 2013, 1, e26142.	1.8	2
26	Facioscapulohumeral Muscular Dystrophy—a Tale of Heterogeneity and the Power of Clinical Assessments. JAMA Network Open, 2020, 3, e205004.	5.9	1
27	P.16.7 Length dependent telomere looping affects long-distant gene expression (5Mb) in FSHD. Neuromuscular Disorders, 2013, 23, 824.	0.6	0
28	C-HiC: A High-Resolution Method for Unbiased Chromatin Conformation Capture Targeting Small Locus. Methods in Molecular Biology, 2021, 2157, 85-102.	0.9	0