
Nathalie Reuter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4143272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nature Methods, 2021, 18, 382-388.	9.0	557
2	Frontier Bonds in QM/MM Methods: A Comparison of Different Approaches. Journal of Physical Chemistry A, 2000, 104, 1720-1735.	1.1	367
3	The Elusive Oxidant Species of Cytochrome P450 Enzymes:  Characterization by Combined Quantum Mechanical/Molecular Mechanical (QM/MM) Calculations. Journal of the American Chemical Society, 2002, 124, 8142-8151.	6.6	290
4	Proliferating cell nuclear antigen acts as a cytoplasmic platform controlling human neutrophil survival. Journal of Experimental Medicine, 2010, 207, 2631-2645.	4.2	144
5	Normal mode analysis for proteins. Computational and Theoretical Chemistry, 2009, 898, 42-48.	1.5	111
6	Measuring and comparing structural fluctuation patterns in large protein datasets. Bioinformatics, 2012, 28, 2431-2440.	1.8	111
7	Green Fluorescent Proteins:Â Empirical Force Field for the Neutral and Deprotonated Forms of the Chromophore. Molecular Dynamics Simulations of the Wild Type and S65T Mutant. Journal of Physical Chemistry B, 2002, 106, 6310-6321.	1.2	110
8	Orexins and their receptors: structural aspects and role in peripheral tissues. Cellular and Molecular Life Sciences, 2003, 60, 72-87.	2.4	107
9	Principal component and normal mode analysis of proteins; a quantitative comparison using the GroEL subunit. Proteins: Structure, Function and Bioinformatics, 2011, 79, 232-243.	1.5	107
10	WEBnm@: a web application for normal mode analyses of proteins. BMC Bioinformatics, 2005, 6, 52.	1.2	103
11	Normal Mode-Based Fitting of Atomic Structure into Electron Density Maps: Application to Sarcoplasmic Reticulum Ca-ATPase. Biophysical Journal, 2005, 88, 818-827.	0.2	97
12	Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects. Human Molecular Genetics, 2015, 24, 1956-1976.	1.4	97
13	WEBnm@ v2.0: Web server and services for comparing protein flexibility. BMC Bioinformatics, 2014, 15, 427.	1.2	95
14	Comparing the intrinsic dynamics of multiple protein structures using elastic network models. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 911-922.	1.1	68
15	Transconformations of the SERCA1 Ca-ATPase: A Normal Mode Study. Biophysical Journal, 2003, 85, 2186-2197.	0.2	65
16	Structures of human proteinase 3 and neutrophil elastase – so similar yet so different. FEBS Journal, 2010, 277, 2238-2254.	2.2	65
17	Evaluation of Protein Elastic Network Models Based on an Analysis of Collective Motions. Journal of Chemical Theory and Computation, 2013, 9, 5618-5628.	2.3	65
18	Cationâ~ïi€ Interactions As Lipid-Specific Anchors for Phosphatidylinositol-Specific Phospholipase C. Journal of the American Chemical Society, 2013, 135, 5740-5750.	6.6	62

#	Article	IF	CITATIONS
19	Evolution of oligomeric state through allosteric pathways that mimic ligand binding. Science, 2014, 346, 1254346.	6.0	62
20	Cation-Ï€ Interactions between Methylated Ammonium Groups and Tryptophan in the CHARMM36 Additive Force Field. Journal of Chemical Theory and Computation, 2019, 15, 7-12.	2.3	58
21	Influence of Charge Distribution at the Active Site Surface on the Substrate Specificity of Human Neutrophil Protease 3 and Elastase. Journal of Biological Chemistry, 2007, 282, 1989-1997.	1.6	56
22	Calibration of the Quantum/Classical Hamiltonian in Semiempirical QM/MM AM1 and PM3 Methods. Journal of Physical Chemistry A, 2000, 104, 10923-10931.	1.1	54
23	Nuclear-to-cytoplasmic Relocalization of the Proliferating Cell Nuclear Antigen (PCNA) during Differentiation Involves a Chromosome Region Maintenance 1 (CRM1)-dependent Export and Is a Prerequisite for PCNA Antiapoptotic Activity in Mature Neutrophils. Journal of Biological Chemistry, 2012. 287. 33812-33825.	1.6	53
24	Visual cavity analysis in molecular simulations. BMC Bioinformatics, 2013, 14, S4.	1.2	52
25	A Role for Weak Electrostatic Interactions in Peripheral Membrane Protein Binding. Biophysical Journal, 2016, 110, 1367-1378.	0.2	47
26	Computational prediction of the binding site of proteinase 3 to the plasma membrane. Proteins: Structure, Function and Bioinformatics, 2008, 71, 1655-1669.	1.5	46
27	Proteinase 3 Is a Phosphatidylserine-binding Protein That Affects the Production and Function of Microvesicles. Journal of Biological Chemistry, 2016, 291, 10476-10489.	1.6	46
28	PDBe-KB: collaboratively defining the biological context of structural data. Nucleic Acids Research, 2022, 50, D534-D542.	6.5	46
29	Molecular Dynamics Simulations of Mixed Acidic/Zwitterionic Phospholipid Bilayers. Biophysical Journal, 2010, 99, 825-833.	0.2	45
30	Interaction of proteinase 3 with its associated partners: implications in the pathogenesis of Wegener's granulomatosis. Current Opinion in Rheumatology, 2010, 22, 1-7.	2.0	43
31	Improving the Force Field Description of Tyrosine–Choline Cationâ^'ï€ Interactions: QM Investigation of Phenol–N(Me) ₄ ⁺ Interactions. Journal of Chemical Theory and Computation, 2016, 12, 5585-5595.	2.3	39
32	Conservation of intrinsic dynamics in proteins — what have computational models taught us?. Current Opinion in Structural Biology, 2018, 50, 75-81.	2.6	38
33	Theoretical study of arginine–carboxylate interactions. Computational and Theoretical Chemistry, 1999, 463, 81-90.	1.5	37
34	Dynamics, flexibility and ligand-induced conformational changes in biological macromolecules: a computational approach. Future Medicinal Chemistry, 2011, 3, 2079-2100.	1.1	37
35	Inspection of the Binding Sites of Proteinase3 for the Design of a Highly Specific Substrate. Journal of Medicinal Chemistry, 2006, 49, 1248-1260.	2.9	36
36	Molecular analysis of the membrane insertion domain of proteinase 3, the WegenerË^s autoantigen, in RBL cells: implication for its pathogenic activity. Journal of Leukocyte Biology, 2011, 90, 941-950.	1.5	35

#	Article	IF	CITATIONS
37	Capturing Choline–Aromatics Cationâ~'Ï€ Interactions in the MARTINI Force Field. Journal of Chemical Theory and Computation, 2020, 16, 2550-2560.	2.3	35
38	Two-Level Approach to Efficient Visualization of Protein Dynamics. IEEE Transactions on Visualization and Computer Graphics, 2007, 13, 1616-1623.	2.9	34
39	Molecular determinants of the N-terminal acetyltransferase Naa60 anchoring to the Golgi membrane. Journal of Biological Chemistry, 2017, 292, 6821-6837.	1.6	33
40	Conformational Sampling and Nucleotide-Dependent Transitions of the GroEL Subunit Probed by Unbiased Molecular Dynamics Simulations. PLoS Computational Biology, 2011, 7, e1002004.	1.5	27
41	Evaluation of models for the evolution of protein sequences and functions under structural constraint. Biophysical Chemistry, 2006, 124, 134-144.	1.5	26
42	A model for hydrophobic protrusions on peripheral membrane proteins. PLoS Computational Biology, 2018, 14, e1006325.	1.5	26
43	Cleavage of p21/WAF1/CIP1 by Proteinase 3 Modulates Differentiation of a Monocytic Cell Line. Journal of Biological Chemistry, 2005, 280, 30242-30253.	1.6	25
44	Exploring the factors determining the dynamics of different protein folds. Protein Science, 2011, 20, 197-209.	3.1	25
45	Search and Subvert: Minimalist Bacterial Phosphatidylinositol-Specific Phospholipase C Enzymes. Chemical Reviews, 2018, 118, 8435-8473.	23.0	25
46	Interactive Visual Analysis of Temporal Cluster Structures. Computer Graphics Forum, 2011, 30, 711-720.	1.8	24
47	Quantifying Transient Interactions between <i>Bacillus</i> Phosphatidylinositol-Specific Phospholipase-C and Phosphatidylcholine-Rich Vesicles. Journal of the American Chemical Society, 2015, 137, 14-17.	6.6	24
48	Interfacial Aromatics Mediating Cationâ^ï€ Interactions with Choline-Containing Lipids Can Contribute as Much to Peripheral Protein Affinity for Membranes as Aromatics Inserted below the Phosphates. Journal of Physical Chemistry Letters, 2019, 10, 3972-3977.	2.1	24
49	Comparing aminoglycoside binding sites in bacterial ribosomal RNA and aminoglycoside modifying enzymes. Proteins: Structure, Function and Bioinformatics, 2013, 81, 63-80.	1.5	23
50	A novel locust (Schistocerca gregaria) serine protease inhibitor with a high affinity for neutrophil elastase. Biochemical Journal, 2006, 400, 467-476.	1.7	21
51	Membrane Docking of the Synaptotagmin 7 C2A Domain: Computation Reveals Interplay between Electrostatic and Hydrophobic Contributions. Biochemistry, 2015, 54, 5696-5711.	1.2	21
52	Differences in the substrate binding sites of murine and human proteinase 3 and neutrophil elastase. FEBS Letters, 2007, 581, 5685-5690.	1.3	19
53	How does Proteinase 3 interact with lipid bilayers?. Physical Chemistry Chemical Physics, 2010, 12, 7487.	1.3	18
54	Characterization of Immunological Cross-Reactivity between Enterotoxigenic Escherichia coli Heat-Stable Toxin and Human Guanylin and Uroguanylin. Infection and Immunity, 2014, 82, 2913-2922.	1.0	18

#	Article	IF	CITATIONS
55	Similarity in Shape Dictates Signature Intrinsic Dynamics Despite No Functional Conservation in TIM Barrel Enzymes. PLoS Computational Biology, 2016, 12, e1004834.	1.5	18
56	Modeling enzyme-inhibitor interactions in serine proteases. , 1999, 74, 299-314.		17
57	Implicit surfaces for interactive graph based cavity analysis of molecular simulations. , 2012, , .		17
58	Reversible Ketomethylene-Based Inhibitors of Human Neutrophil Proteinase 3. Journal of Medicinal Chemistry, 2014, 57, 9396-9408.	2.9	17
59	Two homologous neutrophil serine proteases bind to POPC vesicles with different affinities: When aromatic amino acids matter. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 3191-3202.	1.4	16
60	The vibrational overtones of SiH4 isotopomers: experimental wavenumbers, assignment, ab initio dipole moment surfaces and intensities. Physical Chemistry Chemical Physics, 2001, 3, 3506-3517.	1.3	14
61	Challenges in pKa Predictions for Proteins: The case of Asp213 in Human Proteinase 3. Journal of Physical Chemistry A, 2009, 113, 11783-11792.	1.1	12
62	In Silico Design, Synthesis, and Assays of Specific Substrates for Proteinase 3: Influence of Fluorogenic and Charged Groups. Journal of Medicinal Chemistry, 2014, 57, 1111-1115.	2.9	12
63	Does Changing the Predicted Dynamics of a Phospholipase C Alter Activity and Membrane Binding?. Biophysical Journal, 2013, 104, 185-195.	0.2	11
64	Integrating cluster formation and cluster evaluation in interactive visual analysis. , 2013, , .		8
65	Interactions stabilizing the C-terminal helix of human phospholipid scramblase 1 in lipid bilayers: A computational study. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1200-1210.	1.4	8
66	Dynamics-function relationship in the catalytic domains of N-terminal acetyltransferases. Computational and Structural Biotechnology Journal, 2020, 18, 532-547.	1.9	8
67	Standard Binding Free Energy and Membrane Desorption Mechanism for a Phospholipase C. Journal of Chemical Information and Modeling, 2022, 62, 6602-6613.	2.5	8
68	Classification and phylogeny for the annotation of novel eukaryotic GNAT acetyltransferases. PLoS Computational Biology, 2020, 16, e1007988.	1.5	7
69	The Nature of the Lowâ€Frequency Normal Modes of the E1Ca Form of the SERCA1 Ca ²⁺ â€ATPase. Annals of the New York Academy of Sciences, 2003, 986, 344-346.	1.8	6
70	A dynamic model of longâ€range conformational adaptations triggered by nucleotide binding in GroELâ€GroES. Proteins: Structure, Function and Bioinformatics, 2012, 80, 2333-2346.	1.5	6
71	Specificity of Loxosceles α clade phospholipase D enzymes for choline-containing lipids: Role of a conserved aromatic cage. PLoS Computational Biology, 2022, 18, e1009871.	1.5	6
72	The search for a new model structure of beta-factor XIIa. Journal of Computer-Aided Molecular Design, 2001, 15, 309-322.	1.3	5

#	Article	IF	CITATIONS
73	Specificity and Versatility of Substrate Binding Sites in Four Catalytic Domains of Human N-Terminal Acetyltransferases. PLoS ONE, 2012, 7, e52642.	1.1	5
74	Phospholipids in Motion: High-Resolution ³¹ P NMR Field Cycling Studies. Journal of Physical Chemistry B, 2021, 125, 8827-8838.	1.2	5
75	A Quantum Chemical Approach to Reactions in Biomolecules. Molecular Engineering, 1997, 7, 349-365.	0.2	4
76	d-Peptides as inhibitors of PR3-membrane interactions. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 458-466.	1.4	4
77	Peptidomimetic inhibitors targeting the membrane-binding site of the neutrophil proteinase 3. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1502-1509.	1.4	4
78	The Arabidopsis (ASHH2) CW domain binds monomethylated K4 of the histone H3 tail through conformational selection. FEBS Journal, 2020, 287, 4458-4480.	2.2	4
79	Visual exploration of large normal mode spaces to study protein flexibility. Computers and Graphics, 2020, 90, 73-83.	1.4	4
80	Membrane models for molecular simulations of peripheral membrane proteins. Advances in Physics: X, 2021, 6, 1932589.	1.5	3
81	TMM@: a web application for the analysis of transmembrane helix mobility. BMC Bioinformatics, 2007, 8, 232.	1.2	2
82	Examining the Flexibility of Tim Barrel Proteins Based on their Structural Topology. Biophysical Journal, 2013, 104, 227a-228a.	0.2	1
83	The Functional Role of Membrane Bound Proteinase 3. Biophysical Journal, 2010, 98, 569a.	0.2	0
84	Anchoring of PI-PLC to DMPC Bilayers Involves Specific Cation-PI Interactions. Biophysical Journal, 2012, 102, 78a-79a.	0.2	0
85	Proliferating cell nuclear antigen acts as a cytoplasmic platform controlling human neutrophil survival. Journal of Cell Biology, 2010, 191, i6-i6.	2.3	0
86	Specific Transient Interactions Between a Bacillus Virulence Factor and Phosphatidylcholine in Membranes. FASEB Journal, 2015, 29, 568.9.	0.2	0
87	Levels of proteinase 3 and neutrophil elastase in plasma, BAL and biopsies in COPD. , 2020, , .		0
88	Classification and phylogeny for the annotation of novel eukaryotic GNAT acetyltransferases. , 2020, 16, e1007988.		0
89	Classification and phylogeny for the annotation of novel eukaryotic GNAT acetyltransferases. , 2020, 16, e1007988.		0
90	Classification and phylogeny for the annotation of novel eukaryotic GNAT acetyltransferases. , 2020, 16, e1007988.		0

#	Article	IF	CITATIONS
91	Classification and phylogeny for the annotation of novel eukaryotic GNAT acetyltransferases. , 2020, 16, e1007988.		0
92	Classification and phylogeny for the annotation of novel eukaryotic GNAT acetyltransferases. , 2020, 16, e1007988.		0
93	Classification and phylogeny for the annotation of novel eukaryotic GNAT acetyltransferases. , 2020, 16, e1007988.		0