Joana S. Amaral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4142765/publications.pdf

Version: 2024-02-01

		94269	133063
81	3,787	37	59
papers	citations	h-index	g-index
81	81	81	4294
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Determination of Sterol and Fatty Acid Compositions, Oxidative Stability, and Nutritional Value of Six Walnut (Juglans regial.) Cultivars Grown in Portugal. Journal of Agricultural and Food Chemistry, 2003, 51, 7698-7702.	2.4	227
2	A Comprehensive Review on the Main Honey Authentication Issues: Production and Origin. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 1072-1100.	5.9	191
3	Adulteration of Dietary Supplements by the Illegal Addition of Synthetic Drugs: A Review. Comprehensive Reviews in Food Science and Food Safety, 2016, 15, 43-62.	5.9	156
4	Chemometric characterization of three varietal olive oils (Cvs. Cobrançosa, Madural and Verdeal) Tj ETQq0 0 0 rg 406-414.	gBT /Overl 4.2	ock 10 Tf 50 136
5	Phenolic profile in the quality control of walnut (Juglans regia L.) leaves. Food Chemistry, 2004, 88, 373-379.	4.2	130
6	A SYBR Green real-time PCR assay to detect and quantify pork meat in processed poultry meat products. Meat Science, 2013, 94, 115-120.	2.7	128
7	Chemical composition, antioxidant and antimicrobial activity of phenolic compounds extracted from wine industry by-products. Food Control, 2018, 92, 516-522.	2.8	128
8	Quantification of Tocopherols and Tocotrienols in Portuguese Olive Oils Using HPLC with Three Different Detection Systems. Journal of Agricultural and Food Chemistry, 2006, 54, 3351-3356.	2.4	124
9	Vitamin E Composition of Walnuts (Juglans regial.):Â A 3-Year Comparative Study of Different Cultivars. Journal of Agricultural and Food Chemistry, 2005, 53, 5467-5472.	2.4	109
10	Effects of Roasting on Hazelnut Lipids. Journal of Agricultural and Food Chemistry, 2006, 54, 1315-1321.	2.4	105
11	Simultaneous Determination of Tocopherols and Tocotrienols in Hazelnuts by a Normal Phase Liquid Chromatographic Method. Analytical Sciences, 2005, 21, 1545-1548.	0.8	94
12	Functional Lipid Characteristics of Turkish Tombul Hazelnut (Corylus avellanaL.). Journal of Agricultural and Food Chemistry, 2006, 54, 10177-10183.	2.4	92
13	Quantitative detection of poultry meat adulteration with pork by a duplex PCR assay. Meat Science, 2010, 85, 531-536.	2.7	86
14	Characterization of several hazelnut (Corylus avellana L.) cultivars based in chemical, fatty acid and sterol composition. European Food Research and Technology, 2006, 222, 274-280.	1.6	84
15	Lipid characteristics and essential minerals of native Turkish hazelnut varieties (Corylus avellana L.). Food Chemistry, 2009, 113, 919-925.	4.2	79
16	Classification of PDO olive oils on the basis of their sterol composition by multivariate analysis. Analytica Chimica Acta, 2005, 549, 166-178.	2.6	76
17	Quantitative detection of pork meat by EvaGreen real-time PCR to assess the authenticity of processed meat products. Food Control, 2017, 72, 53-61.	2.8	73
18	DNA barcode markers applied to seafood authentication: an updated review. Critical Reviews in Food Science and Nutrition, 2021, 61, 3904-3935.	5.4	65

#	Article	IF	CITATIONS
19	Improving DNA isolation from honey for the botanical origin identification. Food Control, 2015, 48, 130-136.	2.8	62
20	Chemical and bioactive characterization of the aromatic plant <i>Levisticum officinale</i> W.D.J. Koch: a comprehensive study. Food and Function, 2020, 11, 1292-1303.	2.1	61
21	Botanical origin authentication of dietary supplements by DNAâ€based approaches. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 1080-1109.	5.9	58
22	Triacylglycerol Composition of Walnut (Juglans regial.) Cultivars:Â Characterization by HPLC-ELSD and Chemometrics. Journal of Agricultural and Food Chemistry, 2004, 52, 7964-7969.	2.4	57
23	A Review of Phytic Acid Sources, Obtention, and Applications. Food Reviews International, 2023, 39, 73-92.	4.3	53
24	Evaluation of the Phenolic Profile of Castanea sativa Mill. By-Products and Their Antioxidant and Antimicrobial Activity against Multiresistant Bacteria. Antioxidants, 2020, 9, 87.	2.2	52
25	Authentication of a traditional game meat sausage (Alheira) by species-specific PCR assays to detect hare, rabbit, red deer, pork and cow meats. Food Research International, 2014, 60, 140-145.	2.9	51
26	Phytochemical Characterization and Bioactive Properties of Cinnamon Basil (Ocimum basilicum cv.) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf 5
27	HRM analysis targeting ITS1 and matK loci as potential DNA mini-barcodes for the authentication of Hypericum perforatum and Hypericum androsaemum in herbal infusions. Food Control, 2016, 61, 105-114.	2.8	50
28	A Microfluidic Deformability Assessment of Pathological Red Blood Cells Flowing in a Hyperbolic Converging Microchannel. Micromachines, 2019, 10, 645.	1.4	48
29	Phenolic profile of hazelnut (Corylus Avellana L.) leaves cultivars grown in Portugal. Natural Product Research, 2005, 19, 157-163.	1.0	46
30	Fungal degradation of lignin-based rigid polyurethane foams. Polymer Degradation and Stability, 2012, 97, 2069-2076.	2.7	46
31	Influence of Cultivar and Environmental Conditions on the Triacylglycerol Profile of Hazelnut (Corylus avellanaL.). Journal of Agricultural and Food Chemistry, 2006, 54, 449-456.	2.4	44
32	HPLC/DAD ANALYSIS OF PHENOLIC COMPOUNDS FROM LAVENDER AND ITS APPLICATION TO QUALITY CONTROL. Journal of Liquid Chromatography and Related Technologies, 2000, 23, 2563-2572.	0.5	43
33	Monitoring genetically modified soybean along the industrial soybean oil extraction and refining processes by polymerase chain reaction techniques. Food Research International, 2010, 43, 301-306.	2.9	43
34	Botanical authentication of lavender (Lavandula spp.) honey by a novel DNA-barcoding approach coupled to high resolution melting analysis. Food Control, 2018, 86, 367-373.	2.8	43
35	Identification of duck, partridge, pheasant, quail, chicken and turkey meats by species-specific PCR assays to assess the authenticity of traditional game meat Alheira sausages. Food Control, 2015, 47, 190-195.	2.8	42
36	Detection of genetically modified soybean DNA in refined vegetable oils. European Food Research and Technology, 2010, 230, 915-923.	1.6	41

#	Article	IF	Citations
37	Antimicrobial activity of essential oils from mediterranean aromatic plants against several foodborne and spoilage bacteria. Food Science and Technology International, 2013, 19, 503-510.	1.1	38
38	Development of chitosan-based antimicrobial leather coatings. Carbohydrate Polymers, 2013, 98, 1229-1235.	5.1	37
39	Novel diagnostic tools for Asian (Apis cerana) and European (Apis mellifera) honey authentication. Food Research International, 2018, 105, 686-693.	2.9	37
40	Matrix-normalised real-time PCR approach to quantify soybean as a potential food allergen as affected by thermal processing. Food Chemistry, 2017, 221, 1843-1850.	4.2	34
41	Chemical composition and antimicrobial activity of hydrodistilled oil from juniper berries. Industrial Crops and Products, 2018, 124, 878-884.	2.5	32
42	Do Cultivar, Geographical Location and Crop Season Influence Phenolic Profile of Walnut Leaves?. Molecules, 2008, 13, 1321-1332.	1.7	31
43	Analysis of pharmaceutical adulterants in plant food supplements by UHPLC-MS/MS. European Journal of Pharmaceutical Sciences, 2017, 99, 219-227.	1.9	31
44	Tocopherol and Tocotrienol Content of Hazelnut Cultivars Grown in Portugal. Journal of Agricultural and Food Chemistry, 2006, 54, 1329-1336.	2.4	30
45	Comparative Insight upon Chitosan Solution and Chitosan Nanoparticles Application on the Phenolic Content, Antioxidant and Antimicrobial Activities of Individual Grape Components of Sousão Variety. Antioxidants, 2020, 9, 178.	2.2	29
46	Identification of hare meat by a species-specific marker of mitochondrial origin. Meat Science, 2012, 90, 836-841.	2.7	28
47	Chemical composition and bioactive properties of the wild edible plant Raphanus raphanistrum L. Food Research International, 2019, 121, 714-722.	2.9	28
48	Echinacea purpurea (L.) Moench: Chemical Characterization and Bioactivity of Its Extracts and Fractions. Pharmaceuticals, 2020, 13, 125.	1.7	28
49	Quantitative detection of soybean in meat products by a TaqMan real-time PCR assay. Meat Science, 2014, 98, 41-46.	2.7	27
50	Towards honey authentication: Differentiation of Apis mellifera subspecies in European honeys based on mitochondrial DNA markers. Food Chemistry, 2019, 283, 294-301.	4.2	27
51	Phenolic composition of hazelnut leaves: Influence of cultivar, geographical origin and ripening stage. Scientia Horticulturae, 2010, 126, 306-313.	1.7	25
52	A PCR assay to detect trace amounts of soybean in meat sausages. International Journal of Food Science and Technology, 2010, 45, 2581-2588.	1.3	22
53	A survey on genetically modified maize in foods commercialised in Portugal. Food Control, 2014, 35, 338-344.	2.8	22
54	High Efficacy of Ozonated Oils on the Removal of Biofilms Produced by Methicillin-Resistant Staphylococcus aureus (MRSA) from Infected Diabetic Foot Ulcers. Molecules, 2020, 25, 3601.	1.7	22

#	Article	IF	Citations
55	Tetraoxygenated Xanthones from Centaurium erythraea. Natural Product Research, 2000, 14, 319-323.	0.4	21
56	Nutritional composition and bioactivity of Umbilicus rupestris (Salisb.) Dandy: An underexploited edible wild plant. Food Chemistry, 2019, 295, 341-349.	4.2	21
57	DNA extraction from plant food supplements: Influence of different pharmaceutical excipients. Molecular and Cellular Probes, 2015, 29, 473-478.	0.9	20
58	Revalorization of Almond By-Products for the Design of Novel Functional Foods: An Updated Review. Foods, 2021, 10, 1823.	1.9	20
59	Biobased Additives as Biodegradability Enhancers with Application in TPU-Based Footwear Components. Journal of Renewable Materials, 2016, 4, 47-56.	1.1	18
60	Development and Evaluation of a Normal Phase Liquid Chromatographic Method for the Determination of Tocopherols and Tocotrienols in Walnuts. Journal of Liquid Chromatography and Related Technologies, 2005, 28, 785-795.	0.5	17
61	Lovage (Levisticum officinale W.D.J. Koch) Roots: A Source of Bioactive Compounds towards a Circular Economy. Resources, 2020, 9, 81.	1.6	17
62	Chemical and Bioactive Characterization of the Essential Oils Obtained from Three Mediterranean Plants. Molecules, 2021, 26, 7472.	1.7	16
63	Animal Species Authentication in Dairy Products. Foods, 2022, 11, 1124.	1.9	16
64	Target and Non-Target Approaches for Food Authenticity and Traceability. Foods, 2021, 10, 172.	1.9	15
65	Cereal bars functionalised with tempeh: nutritional composition, isoflavone content and consumer acceptance. International Journal of Food Science and Technology, 2020, 55, 397-405.	1.3	12
66	Seaweed Essential Oils as a New Source of Bioactive Compounds for Cyanobacteria Growth Control: Innovative Ecological Biocontrol Approach. Toxins, 2020, 12, 527.	1.5	11
67	Polycyclic Aromatic Hydrocarbons (PAH) in Olive Oils and Other Vegetable Oils; Potential for Carcinogenesis., 2010,, 489-498.		10
68	Machine Learning Approaches Applied to GC-FID Fatty Acid Profiles to Discriminate Wild from Farmed Salmon. Foods, 2020, 9, 1622.	1.9	10
69	Advances in Authenticity Testing for Meat Speciation. , 2016, , 369-414.		9
70	Authentication of Ginkgo biloba Herbal Products by a Novel Quantitative Real-Time PCR Approach. Foods, 2020, 9, 1233.	1.9	8
71	Characterization of Three Portuguese Varietal Olive Oils Based on Fatty Acids, Triacylglycerols, Phytosterols and Vitamin E Profiles. , 2010, , 581-589.		6
72	Refining of Roundup Ready \hat{A}^{\otimes} soya bean oil: Effect on the fatty acid, phytosterol and tocopherol profiles. European Journal of Lipid Science and Technology, 2011, 113, 528-535.	1.0	6

#	Article	IF	CITATIONS
73	Simple Methodology for the Quantitative Analysis of Fatty Acids in Human Red Blood Cells. Chromatographia, 2015, 78, 1271-1281.	0.7	6
74	Towards authentication of Korean ginseng-containing foods: Differentiation of five Panax species by a novel diagnostic tool. LWT - Food Science and Technology, 2021, 151, 112211.	2.5	6
75	Phytic Acid against Clostridium perfringens Type A: A Food Matrix Study. Foods, 2022, 11, 406.	1.9	6
76	Tracing Styphnolobium japonicum (syn: Sophora japonica) as a potential adulterant of ginkgo-containing foods by real-time PCR. Journal of Food Composition and Analysis, 2021, 100, 103891.	1.9	5
77	High-Resolution Melting Analysis as a Tool for Plant Species Authentication. Methods in Molecular Biology, 2021, 2264, 55-73.	0.4	5
78	Botanical authentication of globe artichoke-containing foods: Differentiation of Cynara scolymus by a novel HRM approach. Food Chemistry, 2022, 366, 130621.	4.2	2
79	Authentication of carnaroli rice by HRM analysis targeting nucleotide polymorphisms in the Alk and Waxy genes. Food Control, 2022, 135, 108829.	2.8	2
80	Fall Detection Systems to be Used by Elderly People. , 2013, , 449-473.		0
81	Drying of Grape Pomace by Conventional and Intermittent Processes: Mathematical Modeling and Effect on the Phenolic Content and Antioxidant Activity. Proceedings (mdpi), 2020, 70, .	0.2	0