
Doris E Reiter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4142583/publications.pdf Version: 2024-02-01

DODIS F REITED

#	Article	IF	CITATIONS
1	Deterministic Photon Storage and Readout in a Semimagnetic QuantumÂDot–CavityÂSystem Doped with a Single Mn Ion. Advanced Quantum Technologies, 2022, 5, .	1.8	1
2	Self-Assembled Honeycomb Lattices of Dielectric Colloidal Nanospheres Featuring Photonic Dirac Cones. ACS Applied Nano Materials, 2022, 5, 3386-3393.	2.4	2
3	SUPER Scheme in Action: Experimental Demonstration of Red-Detuned Excitation of a Quantum Emitter. Nano Letters, 2022, 22, 6567-6572.	4.5	19
4	Simulation, fabrication and control of nanophotonic circuits including diamond-based quantum emitters. , 2021, , .		0
5	Dark exciton preparation in a quantum dot by a longitudinal light field tuned to higher exciton states. Physical Review Research, 2021, 3, .	1.3	7
6	Femtosecond Transfer and Manipulation of Persistent Hot-Trion Coherence in a Single <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>CdSe</mml:mi><mml:mo>/</mml:mo><mml:mi>ZnSe</mml:mi> Quantum Dot. Physical Review Letters, 2021, 126, 067402.</mml:math 	2.9	11
7	Time-dependent switching of the photon entanglement type using a driven quantum emitter–cavity system. Applied Physics Letters, 2021, 118, 164001.	1.5	3
8	SchrĶdinger cat states in quantum-dot-cavity systems. Physical Review Research, 2021, 3, .	1.3	5
9	Optical Signals to Monitor the Dynamics of Phononâ€Modified Rabi Oscillations in a Quantum Dot. Annalen Der Physik, 2021, 533, 2100086.	0.9	4
10	Ultrafast Detection and Manipulation of a Persistent Trion Coherence in a Single CdSe/ZnSe Quantum Dot. , 2021, , .		0
11	Accuracy of the Quantum Regression Theorem for Photon Emission from a Quantum Dot. Physical Review Letters, 2021, 127, 100402.	2.9	15
12	Optical Stark shift to control the dark exciton occupation of a quantum dot in a tilted magnetic field. Physical Review B, 2021, 104, .	1.1	6
13	Different Types of Photon Entanglement from a Constantly Driven Quantum Emitter Inside a Cavity. Advanced Quantum Technologies, 2021, 4, 2000108.	1.8	6
14	Comparison of the semiclassical and quantum optical field dynamics in a pulse-excited optical cavity with a finite number of quantum emitters. Physical Review B, 2021, 104, .	1.1	2
15	Optically driving the radiative Auger transition. Nature Communications, 2021, 12, 6575.	5.8	6
16	Electron Dynamics in a Two-Dimensional Nanobubble: A Two-Level System Based on Spatial Density. Nano Letters, 2021, 21, 9896-9902.	4.5	3
17	Swing-Up of Quantum Emitter Population Using Detuned Pulses. PRX Quantum, 2021, 2, .	3.5	24
18	Phonon signatures in spectra of exciton polaritons in transition metal dichalcogenides. Physical Review B. 2021, 104	1.1	9

#	Article	IF	CITATIONS
19	Optimal Photonic Crystal Cavities for Coupling Nanoemitters to Photonic Integrated Circuits. Advanced Quantum Technologies, 2020, 3, 1900084.	1.8	18
20	Integration of Diamond-Based Quantum Emitters with Nanophotonic Circuits. Nano Letters, 2020, 20, 8170-8177.	4.5	35
21	Selection rules for the excitation of quantum dots by spatially structured light beams: Application to the reconstruction of higher excited exciton wave functions. Physical Review B, 2020, 102, .	1.1	1
22	Semiclassical modeling of coupled quantum-dot–cavity systems: From polaritonlike dynamics to Rabi oscillations. Physical Review B, 2020, 101, .	1.1	5
23	Theory of the absorption line shape in monolayers of transition metal dichalcogenides. Physical Review B, 2020, 101, .	1.1	27
24	On-demand generation of higher-order Fock states in quantum-dot–cavity systems. Physical Review Research, 2020, 2, .	1.3	14
25	Phonon-mediated exciton capture in Mo-based transition metal dichalcogenides. Physical Review Research, 2020, 2, .	1.3	3
26	Persistent intraband quantum beats and femtosecond hole relaxation in a single charged CdSe/ZnSe quantum dot. , 2020, , .		0
27	Effective detection of spatio-temporal carrier dynamics by carrier capture. Journal of Physics Condensed Matter, 2019, 31, 28LT01.	0.7	3
28	Distinctive characteristics of carrier-phonon interactions in optically driven semiconductor quantum dots. Advances in Physics: X, 2019, 4, 1655478.	1.5	37
29	Spatiotemporal dynamics of Coulomb-correlated carriers in semiconductors. Physical Review B, 2019, 99, .	1.1	4
30	A review on optical excitation of semiconductor quantum dots under the influence of phonons. Semiconductor Science and Technology, 2019, 34, 063002.	1.0	31
31	Reexamination of Bessel beams: A generalized scheme to derive optical vortices. Physical Review A, 2019, 99, .	1.0	18
32	Influence of the quantum dot geometry on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>p</mml:mi> -shell transitions in differently charged quantum dots. Physical Review B, 2018, 97, .</mml:math 	1.1	14
33	Charge and spin control of ultrafast electron and hole dynamics in single CdSe/ZnSe quantum dots. Physical Review B, 2018, 97, .	1.1	19
34	Orbital angular momentum dichroism in nanoantennas. Communications Physics, 2018, 1, .	2.0	45
35	Spatial control of carrier capture in two-dimensional materials: Beyond energy selection rules. Physical Review B, 2018, 98, .	1.1	9
36	Dynamic theory of nanophotonic control of two-dimensional semiconductor nonlinearities. Physical Review B, 2018, 98, .	1.1	3

#	Article	IF	CITATIONS
37	Coherent phonon lasing in a thermal quantum nanomachine. Physical Review A, 2018, 98, .	1.0	2
38	Coulomb effects on the photoexcited quantum dynamics of electrons in a plasmonic nanosphere. Physical Review B, 2018, 98, .	1.1	3
39	Interaction of an Archimedean spiral structure with orbital angular momentum light. New Journal of Physics, 2018, 20, 095005.	1.2	20
40	Formulation of the twisted-light–matter interaction at the phase singularity: Beams with strong magnetic fields. Physical Review A, 2017, 95, .	1.0	18
41	Time-resolved pump-probe signals of a continuously driven quantum dot affected by phonons. Physical Review B, 2017, 95, .	1.1	18
42	Reading the Orbital Angular Momentum of Light Using Plasmonic Nanoantennas. ACS Photonics, 2017, 4, 891-896.	3.2	35
43	Picosecond Control of Quantum Dot Laser Emission by Coherent Phonons. Physical Review Letters, 2017, 118, 133901.	2.9	23
44	Coherent and robust high-fidelity generation of a biexciton in a quantum dot by rapid adiabatic passage. Physical Review B, 2017, 95, .	1.1	41
45	Demonstrating the decoupling regime of the electron-phonon interaction in a quantum dot using chirped optical excitation. Physical Review B, 2017, 95, .	1.1	31
46	Systematic study of the influence of coherent phonon wave packets on the lasing properties of a quantum dot ensemble. New Journal of Physics, 2017, 19, 073001.	1.2	7
47	Lindblad approach to spatiotemporal quantum dynamics of phonon-induced carrier capture processes. Physical Review B, 2017, 95, .	1.1	12
48	Phonon-assisted dark exciton preparation in a quantum dot. Physical Review B, 2017, 95, .	1.1	7
49	Exploring coherence of individual excitons in InAs quantum dots embedded in natural photonic defects: Influence of the excitation intensity. Physical Review B, 2017, 96, .	1.1	9
50	Phonon impact on optical control schemes of quantum dots: Role of quantum dot geometry and symmetry. Physical Review B, 2017, 96, .	1.1	26
51	Deterministic positioning of single-photon emitters in monolayer WSe <inf>2</inf> on the nanoscale. , 2017, , .		0
52	Control of quantum dot laser emission by coherent phonon wave packets. Journal of Physics: Conference Series, 2017, 906, 012025.	0.3	0
53	Magnetic-optical transitions induced by twisted light in quantum dots. Journal of Physics: Conference Series, 2017, 906, 012014.	0.3	1
54	Spatio-Temporal Dynamics of Carrier Capture Processes: Simulation of Optical Signals. Acta Physica Polonica A, 2017, 132, 372-375.	0.2	5

#	Article	IF	CITATIONS
55	Nanoscale Positioning of Singleâ€Photon Emitters in Atomically Thin WSe ₂ . Advanced Materials, 2016, 28, 7101-7105.	11.1	162
56	Impact of Phonons on Dephasing of Individual Excitons in Deterministic Quantum Dot Microlenses. ACS Photonics, 2016, 3, 2461-2466.	3.2	35
57	Quantum dynamics of optical phonons generated by optical excitation of a quantum dot. Journal of Computational Electronics, 2016, 15, 1158-1169.	1.3	13
58	Single-Photon Emitters: Nanoscale Positioning of Single-Photon Emitters in Atomically Thin WSe2 (Adv. Mater. 33/2016). Advanced Materials, 2016, 28, 7032-7032.	11.1	3
59	Dynamics of excitons in individual InAs quantum dots revealed in four-wave mixing spectroscopy. Optica, 2016, 3, 377.	4.8	34
60	Fast and selective phonon-assisted state preparation of a quantum dot by adiabatic undressing. Physical Review B, 2016, 94, .	1.1	30
61	Dynamical calculation of third-harmonic generation in a semiconductor quantum well. Physical Review B, 2016, 94, .	1.1	7
62	Direct optical state preparation of the dark exciton in a quantum dot. Physical Review B, 2015, 92, .	1.1	17
63	Generating sequences of phonon wave packets by optical excitation of a quantum dot. Journal of Physics: Conference Series, 2015, 647, 012025.	0.3	0
64	Optical control of exciton and spin states in a quantum dot by excitation with twisted light. Journal of Physics: Conference Series, 2015, 647, 012012.	0.3	4
65	Squeezed Phonon Wave Packet Generation by Optical Manipulation of a Quantum Dot. Photonics, 2015, 2, 214-227.	0.9	7
66	Formulation of the twisted-light–matter interaction at the phase singularity: The twisted-light gauge. Physical Review A, 2015, 91, .	1.0	33
67	The role of phonons for exciton and biexciton generation in an optically driven quantum dot. Journal of Physics Condensed Matter, 2014, 26, 423203.	0.7	59
68	Energy transport and coherence properties of acoustic phonons generated by optical excitation of a quantum dot. Journal of Physics Condensed Matter, 2014, 26, 355802.	0.7	26
69	Fluctuation properties of acoustic phonons generated by ultrafast optical excitation of a quantum dot. Physical Review B, 2013, 87, .	1.1	13
70	Optical signals of spin switching using the optical Stark effect in a Mn-doped quantum dot. Physical Review B, 2013, 87, .	1.1	15
71	Biexciton state preparation in a quantum dot via adiabatic rapid passage: Comparison between two control protocols and impact of phonon-induced dephasing. Physical Review B, 2013, 87, .	1.1	39
72	Switching between ground states of an InAs quantum dot doped with a single Mn atom. Physical Review B, 2013, 88, .	1.1	4

#	Article	IF	CITATIONS
73	Adiabatic rapid passage in quantum dots: phononâ€assisted decoherence and biexciton generation. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1210-1213.	0.8	2
74	Dephasing in the adiabatic rapid passage in quantum dots: Role of phonon-assisted biexciton generation. Physical Review B, 2012, 86, .	1.1	20
75	Influence of acoustic phonons on the optical control of quantum dots driven by adiabatic rapid passage. Physical Review B, 2012, 85, .	1.1	55
76	Spin switching in a Mn-doped quantum dot using the optical Stark effect. Physical Review B, 2012, 85, .	1.1	19
77	Spectral characteristics and dynamics of a light hole type quantum dot doped with a single Mn atom. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 1284-1287.	0.8	0
78	Conditions for generating squeezed phonon states in an optically excited quantum dot. , 2012, , .		0
79	Long-time dynamics and stationary nonequilibrium of an optically driven strongly confined quantum dot coupled to phonons. Physical Review B, 2011, 84, .	1.1	59
80	Fluctuation properties of phonons generated by ultrafast optical excitation of a quantum dot. Physica Status Solidi (B): Basic Research, 2011, 248, 825-828.	0.7	5
81	Coherent control of a single Mn spin in a quantum dot via optical manipulation of the light hole exciton. Physical Review B, 2011, 83, .	1.1	20
82	Quantum kinetics of squeezed lattice displacement generated by phonon down conversion. Physical Review B, 2011, 84, .	1.1	11
83	Generation and dynamics of phononic cat states after optical excitation of a quantum dot. Physical Review B, 2011, 84, .	1.1	22
84	All-optical spin switching in neutral or charged magnetic quantum dots. Journal of Physics: Conference Series, 2010, 210, 012004.	0.3	0
85	Fast preparation and detection of Mn spin states in a magnetically doped quantum dot. Journal of Physics: Conference Series, 2010, 245, 012033.	0.3	0
86	Ultrafast dynamics and optical spin-control in single magnetic quantum dots. , 2010, , .		4
87	Lattice Fluctuations at a Double Phonon Frequency with and without Squeezing: An Exactly Solvable Model of an Optically Excited Quantum Dot. Physical Review Letters, 2010, 105, 157401.	2.9	25
88	Optically controlled spin dynamics in a magnetically doped quantum dot. Nanoscience and Technology, 2010, , 131-150.	1.5	0
89	Optical control of the spin state in a semimagnetic quantum dot. Physica Status Solidi (B): Basic Research, 2009, 246, 315-319.	0.7	1
90	Spin control by ultra short laser pulses in a Mn doped quantum dot. Physica Status Solidi (B): Basic Research, 2009, 246, 779-783.	0.7	7

#	Article	IF	CITATIONS
91	All-Optical Spin Manipulation of a Single Manganese Atom in a Quantum Dot. Physical Review Letters, 2009, 102, 177403.	2.9	65
92	Generation of squeezed phonon states by optical excitation of a quantum dot. Journal of Physics: Conference Series, 2009, 193, 012121.	0.3	2
93	Coherent control of electron propagation and capture in semiconductor heterostructures. Europhysics Letters, 2009, 88, 67005.	0.7	9
94	Dynamics of a single Mn spin in a quantum dot: The role of magnetic fields in Faraday and Voigt geometry. Journal of Physics: Conference Series, 2009, 193, 012101.	0.3	1
95	Coherent control of carrier capture and wave front dynamics in homogeneously excited quantum wire-dot systems. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 347-350.	0.8	0
96	Control of capture-induced coherences in wave packet transport through nanostructures. Physica Status Solidi (B): Basic Research, 2006, 243, 2297-2301.	0.7	4
97	Phonon wave packet emission during state preparation of a semiconductor quantum dot using different schemes. Physica Status Solidi (B): Basic Research, 0, , .	0.7	4