Justin A Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4142188/publications.pdf

Version: 2024-02-01

759233 713466 22 798 12 21 citations h-index g-index papers 22 22 22 837 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Synthetic spider silk: a modular fiber. Trends in Biotechnology, 2000, 18, 374-379.	9.3	238
2	Solid-State NMR Comparison of Various Spiders' Dragline Silk Fiber. Biomacromolecules, 2010, 11, 2039-2043.	5.4	65
3	Nephila clavipes Flagelliform Silk-Like GGX Motifs Contribute to Extensibility and Spacer Motifs Contribute to Strength in Synthetic Spider Silk Fibers. Biomacromolecules, 2013, 14, 1751-1760.	5.4	64
4	Mechanical and Physical Properties of Recombinant Spider Silk Films Using Organic and Aqueous Solvents. Biomacromolecules, 2014, 15, 3158-3170.	5.4	64
5	More Than Just Fibers: An Aqueous Method for the Production of Innovative Recombinant Spider Silk Protein Materials. Biomacromolecules, 2015, 16, 1418-1425.	5.4	58
6	Physical and biological regulation of neuron regenerative growth andÂnetwork formation on recombinant dragline silks. Biomaterials, 2015, 48, 137-146.	11.4	48
7	CRISPR/Cas9 Initiated Transgenic Silkworms as a Natural Spinner of Spider Silk. Biomacromolecules, 2019, 20, 2252-2264.	5.4	47
8	Economic feasibility and environmental impact of synthetic spider silk production from escherichia coli. New Biotechnology, 2018, 42, 12-18.	4.4	39
9	Sticky Situation: An Investigation of Robust Aqueous-Based Recombinant Spider Silk Protein Coatings and Adhesives. Biomacromolecules, 2016, 17, 3761-3772.	5.4	37
10	Secondary Structure Adopted by the Gly-Gly-X Repetitive Regions of Dragline Spider Silk. International Journal of Molecular Sciences, 2016, 17, 2023.	4.1	29
11	Distinct contributions of model MaSp1 and MaSp2 like peptides to the mechanical properties of synthetic major ampullate silk fibers as revealed in silico. Nanotechnology, Science and Applications, 2008, Volume 1, 9-16.	4.6	24
12	Silkworms with Spider Silklike Fibers Using Synthetic Silkworm Chow Containing Calcium Lignosulfonate, Carbon Nanotubes, and Graphene. ACS Omega, 2019, 4, 4832-4838.	3.5	14
13	The absence of detectable fetal microchimerism in nontransgenic goats (Capra aegagrus hircus) bearing transgenic offspring12. Journal of Animal Science, 2012, 90, 481-488.	0.5	12
14	Efficient screening of high-signal and low-background antibody pairs in the bio-bar code assay using prion protein as the target. Analytical Biochemistry, 2008, 382, 60-62.	2.4	11
15	Large scale production of synthetic spider silk proteins in Escherichia coli. Protein Expression and Purification, 2021, 183, 105839.	1.3	11
16	Method for the Destruction of Endotoxin in Synthetic Spider Silk Proteins. Scientific Reports, 2018, 8, 12166.	3.3	9
17	Utilizing Recombinant Spider Silk Proteins To Develop a Synthetic Bruch's Membrane for Modeling the Retinal Pigment Epithelium. ACS Biomaterials Science and Engineering, 2019, 5, 4023-4036.	5.2	8
18	Production and Application of Syringomycin E as an Organic Fungicide Seed Protectant against <i>Pythium</i> Dampingâ€off. Journal of Phytopathology, 2016, 164, 801-810.	1.0	7

#	Article	lF	CITATION
19	The next generation of protein superâ€fibres: robust recombinant production and recovery of hagfish intermediate filament proteins with fibre spinning and mechanical–structural characterizations. Microbial Biotechnology, 2021, 14, 1976-1989.	4.2	7
20	Importance of Heat and Pressure for Solubilization of Recombinant Spider Silk Proteins in Aqueous Solution. International Journal of Molecular Sciences, 2016, 17, 1955.	4.1	5
21	Silkworm Silk Fiber Bundles as Improved <i>In Vitro</i> Scaffolds for Skeletal Muscle. ACS Biomaterials Science and Engineering, 2020, 6, 6853-6863.	5.2	1
22	Material Formation of Recombinant Spider Silks through Aqueous Solvation using Heat and Pressure. Journal of Visualized Experiments, 2019, , .	0.3	0