Nina Balke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/414200/publications.pdf

Version: 2024-02-01

151 12,225 54 108 papers citations h-index g-index

154 154 154 154 154 12221

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nature Materials, 2008, 7, 478-482.	27.5	1,219
2	Conduction at domain walls in oxide multiferroics. Nature Materials, 2009, 8, 229-234.	27.5	1,212
3	Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nature Nanotechnology, 2010, 5, 749-754.	31.5	513
4	Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nature Materials, 2009, 8, 485-493.	27. 5	481
5	Deterministic control of ferroelastic switching in multiferroic materials. Nature Nanotechnology, 2009, 4, 868-875.	31.5	331
6	Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3. Nature Physics, 2012, 8, 81-88.	16.7	324
7	Multiferroics and magnetoelectrics: thin films and nanostructures. Journal of Physics Condensed Matter, 2008, 20, 434220.	1.8	292
8	Electromechanical Imaging and Spectroscopy of Ferroelectric and Piezoelectric Materials: State of the Art and Prospects for the Future. Journal of the American Ceramic Society, 2009, 92, 1629-1647.	3.8	287
9	Homogenization of Al CoCrFeNi high-entropy alloys with improved corrosion resistance. Corrosion Science, 2018, 133, 120-131.	6.6	283
10	Ferroelectric or non-ferroelectric: Why so many materials exhibit "ferroelectricity―on the nanoscale. Applied Physics Reviews, 2017, 4, .	11.3	240
11	Ferroelectricity in Strain-Free <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>SrTiO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> Thin Films. Physical Review Letters, 2010, 104, 197601.	7.8	233
12	Real Space Mapping of Li-Ion Transport in Amorphous Si Anodes with Nanometer Resolution. Nano Letters, 2010, 10, 3420-3425.	9.1	232
13	Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy. ACS Nano, 2015, 9, 6484-6492.	14.6	231
14	Nanoscale Insight Into Leadâ€Free BNTâ€BTâ€ <i>x</i> KNN. Advanced Functional Materials, 2012, 22, 4208-4215.	. 14.9	225
15	Room-Temperature Multiferroic Hexagonal <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>LuFeO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> Films. Physical Review Letters, 2013, 110, 237601.	7.8	195
16	Nanoscale Imaging of Fundamental Li Battery Chemistry: Solid-Electrolyte Interphase Formation and Preferential Growth of Lithium Metal Nanoclusters. Nano Letters, 2015, 15, 2011-2018.	9.1	185
17	Controlling the actuation properties of MXene paper electrodes upon cation intercalation. Nano Energy, 2015, 17, 27-35.	16.0	166
18	In-situ electrochemical-AFM study of localized corrosion of Al CoCrFeNi high-entropy alloys in chloride solution. Applied Surface Science, 2018, 439, 533-544.	6.1	147

#	Article	IF	CITATIONS
19	Elucidating the Phase Transformation of Li ₄ Ti ₅ O ₁₂ Lithiation at the Nanoscale. ACS Nano, 2016, 10, 4312-4321.	14.6	144
20	Bias-Dependent Molecular-Level Structure of Electrical Double Layer in Ionic Liquid on Graphite. Nano Letters, 2013, 13, 5954-5960.	9.1	142
21	Tunable quadruple-well ferroelectric van der Waals crystals. Nature Materials, 2020, 19, 43-48.	27.5	140
22	Local probing of ionic diffusion by electrochemical strain microscopy: Spatial resolution and signal formation mechanisms. Journal of Applied Physics, 2010, 108, .	2.5	138
23	Exploring Local Electrostatic Effects with Scanning Probe Microscopy: Implications for Piezoresponse Force Microscopy and Triboelectricity. ACS Nano, 2014, 8, 10229-10236.	14.6	123
24	Nanoscale Ferroelectricity in Crystalline γâ€Glycine. Advanced Functional Materials, 2012, 22, 2996-3003.	14.9	119
25	Effects of interlayer confinement and hydration on capacitive charge storage in birnessite. Nature Materials, 2021, 20, 1689-1694.	27.5	119
26	Exploring Topological Defects in Epitaxial BiFeO ₃ Thin Films. ACS Nano, 2011, 5, 879-887.	14.6	118
27	Nanoscale Elastic Changes in 2D Ti ₃ C ₂ T _{<i>>x</i>} (MXene) Pseudocapacitive Electrodes. Advanced Energy Materials, 2016, 6, 1502290.	19.5	117
28	Domain Wall Conduction and Polarizationâ€Mediated Transport in Ferroelectrics. Advanced Functional Materials, 2013, 23, 2592-2616.	14.9	113
29	The Role of Electrochemical Phenomena in Scanning Probe Microscopy of Ferroelectric Thin Films. ACS Nano, 2011, 5, 5683-5691.	14.6	109
30	Tracking ion intercalation into layered Ti ₃ C ₂ MXene films across length scales. Energy and Environmental Science, 2020, 13, 2549-2558.	30.8	100
31	Fatigue of Lead Zirconate Titanate Ceramics. I: Unipolar and DC Loading. Journal of the American Ceramic Society, 2007, 90, 1081-1087.	3.8	98
32	Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films. Nature Materials, 2016, 15, 549-556.	27.5	98
33	Mixed electrochemical–ferroelectric states in nanoscale ferroelectrics. Nature Physics, 2017, 13, 812-818.	16.7	98
34	Probing charge screening dynamics and electrochemical processes at the solid–liquid interface with electrochemical force microscopy. Nature Communications, 2014, 5, 3871.	12.8	97
35	Decoupling Electrochemical Reaction and Diffusion Processes in Ionically-Conductive Solids on the Nanometer Scale. ACS Nano, 2010, 4, 7349-7357.	14.6	96
36	Aging in Ferroelectrics. Journal of the American Ceramic Society, 2006, 89, 224-229.	3.8	93

#	Article	IF	CITATIONS
37	Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy. Nanotechnology, 2016, 27, 425707.	2.6	92
38	Nanoscale Mapping of Extrinsic Interfaces in Hybrid Solid Electrolytes. Joule, 2020, 4, 207-221.	24.0	85
39	Phase Transitions, Phase Coexistence, and Piezoelectric Switching Behavior in Highly Strained BiFeO ₃ Films. Advanced Materials, 2013, 25, 5561-5567.	21.0	84
40	Direct Observation of Capacitor Switching Using Planar Electrodes. Advanced Functional Materials, 2010, 20, 3466-3475.	14.9	81
41	Local Electrochemical Functionality in Energy Storage Materials and Devices by Scanning Probe Microscopies: Status and Perspectives. Advanced Materials, 2010, 22, E193-209.	21.0	78
42	Threeâ€State Ferroelastic Switching and Large Electromechanical Responses in PbTiO ₃ Thin Films. Advanced Materials, 2017, 29, 1702069.	21.0	74
43	Li-ion dynamics and reactivity on the nanoscale. Materials Today, 2011, 14, 548-558.	14.2	73
44	Ultrathin limit and dead-layer effects in local polarization switching of BiFeO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> . Physical Review B, 2012, 85, .	3.2	71
45	Room-Temperature Electrocaloric Effect in Layered Ferroelectric CulnP ₂ S ₆ for Solid-State Refrigeration. ACS Nano, 2019, 13, 8760-8765.	14.6	69
46	Locally Controlled Cu-Ion Transport in Layered Ferroelectric CuInP ₂ S ₆ . ACS Applied Materials & Dr. (1998). ACS Appli	8.0	68
47	Size-effect in layered ferrielectric CulnP2S6. Applied Physics Letters, 2016, 109, .	3.3	66
48	Defectâ€Mediated Polarization Switching in Ferroelectrics and Related Materials: From Mesoscopic Mechanisms to Atomistic Control. Advanced Materials, 2010, 22, 314-322.	21.0	62
49	Direct Mapping of Ionic Transport in a Si Anode on the Nanoscale: Time Domain Electrochemical Strain Spectroscopy Study. ACS Nano, 2011, 5, 9682-9695.	14.6	61
50	In situ tracking of the nanoscale expansion of porous carbon electrodes. Energy and Environmental Science, 2013, 6, 225-231.	30.8	60
51	Current and surface charge modified hysteresis loops in ferroelectric thin films. Journal of Applied Physics, 2015, 118, .	2.5	60
52	Ultrathin Limit of Exchange Bias Coupling at Oxide Multiferroic/Ferromagnetic Interfaces. Advanced Materials, 2013, 25, 4739-4745.	21.0	59
53	Local Detection of Activation Energy for Ionic Transport in Lithium Cobalt Oxide. Nano Letters, 2012, 12, 3399-3403.	9.1	58
54	Watching domains grow: <i>In-situ</i> studies of polarization switching by combined scanning probe and scanning transmission electron microscopy. Journal of Applied Physics, 2011, 110, .	2.5	57

#	Article	IF	CITATIONS
55	Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy. Scientific Reports, 2016, 6, 32389.	3.3	57
56	Titanium Carbide MXene Shows an Electrochemical Anomaly in Water-in-Salt Electrolytes. ACS Nano, 2021, 15, 15274-15284.	14.6	56
57	Mechanical Control of Electroresistive Switching. Nano Letters, 2013, 13, 4068-4074.	9.1	55
58	Synergetic effects of K ⁺ and Mg ²⁺ ion intercalation on the electrochemical and actuation properties of the two-dimensional Ti ₃ C ₂ MXene. Faraday Discussions, 2017, 199, 393-403.	3.2	55
59	<i>Operando</i> Atomic Force Microscopy Reveals Mechanics of Structural Water Driven Battery-to-Pseudocapacitor Transition. ACS Nano, 2018, 12, 6032-6039.	14.6	50
60	Full data acquisition in Kelvin Probe Force Microscopy: Mapping dynamic electric phenomena in real space. Scientific Reports, 2016, 6, 30557.	3.3	47
61	Piezoelectric domain walls in van der Waals antiferroelectric CulnP2Se6. Nature Communications, 2020, 11, 3623.	12.8	47
62	Giant negative electrostriction and dielectric tunability in a van der Waals layered ferroelectric. Physical Review Materials, 2019, 3, .	2.4	47
63	Progress on Emerging Ferroelectric Materials for Energy Harvesting, Storage and Conversion. Advanced Energy Materials, 2022, 12, .	19.5	45
64	Electrostrictive and electrostatic responses in contact mode voltage modulated scanning probe microscopies. Applied Physics Letters, 2014, 104, 232901.	3.3	44
65	Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition. Nature Communications, 2015, 6, 8985.	12.8	43
66	Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy. Nanotechnology, 2017, 28, 065704.	2.6	43
67	Direct Mapping of Ion Diffusion Times on LiCoO2 Surfaces with Nanometer Resolution. Journal of the Electrochemical Society, 2011, 158, A982.	2.9	41
68	Virtual Electrochemical Strain Microscopy of Polycrystalline LiCoO2 Films. Journal of the Electrochemical Society, 2011, 158, A1083.	2.9	41
69	Nanoscale Control of Oxygen Defects and Metal–Insulator Transition in Epitaxial Vanadium Dioxides. ACS Nano, 2018, 12, 7159-7166.	14.6	41
70	Strainâ€Based In Situ Study of Anion and Cation Insertion into Porous Carbon Electrodes with Different Pore Sizes. Advanced Energy Materials, 2014, 4, 1300683.	19.5	39
71	Understanding the nanoscale redox-behavior of iron-anodes for rechargeable iron-air batteries. Nano Energy, 2017, 41, 706-716.	16.0	39
72	Defect-induced asymmetry of local hysteresis loops on BiFeO3 surfaces. Journal of Materials Science, 2009, 44, 5095-5101.	3.7	38

#	Article	IF	Citations
73	Probing Local Bias-Induced Transitions Using Photothermal Excitation Contact Resonance Atomic Force Microscopy and Voltage Spectroscopy. ACS Nano, 2015, 9, 1848-1857.	14.6	37
74	Fast Scanning Probe Microscopy via Machine Learning: Nonâ€Rectangular Scans with Compressed Sensing and Gaussian Process Optimization. Small, 2020, 16, e2002878.	10.0	37
75	Bipolar Fatigue Caused by Field Screening in Pb(Zr,Ti)O3Ceramics. Journal of the American Ceramic Society, 2007, 90, 070922001254005-???.	3.8	36
76	Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe force microscopy. Nanotechnology, 2016, 27, 105706.	2.6	36
77	Topological defects in electric double layers of ionic liquids at carbon interfaces. Nano Energy, 2015, 15, 737-745.	16.0	35
78	Effect of Doping on Surface Reactivity and Conduction Mechanism in Samarium-Doped Ceria Thin Films. ACS Nano, 2014, 8, 12494-12501.	14.6	34
79	Enhancing interfacial magnetization with a ferroelectric. Physical Review B, 2016, 94, .	3.2	34
80	Alignment of Polarization against an Electric Field in van der Waals Ferroelectrics. Physical Review Applied, 2020, 13, .	3.8	34
81	Fatigue of Lead Zirconate Titanate Ceramics II: Sesquipolar Loading. Journal of the American Ceramic Society, 2007, 90, 1088-1093.	3.8	32
82	Toward Electrochemical Studies on the Nanometer and Atomic Scales: Progress, Challenges, and Opportunities. ACS Nano, 2019, 13, 9735-9780.	14.6	32
83	Piezoresponse amplitude and phase quantified for electromechanical characterization. Journal of Applied Physics, 2020, 128, .	2.5	31
84	The Concept of Negative Capacitance in Ionically Conductive Van der Waals Ferroelectrics. Advanced Energy Materials, 2020, 10, 2001726.	19.5	30
85	Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach. Nanoscale, 2016, 8, 13838-13858.	5.6	27
86	Degradation of lead-zirconate-titanate ceramics under different dc loads. Journal of Applied Physics, 2009, 105, .	2.5	25
87	Three-dimensional vector electrochemical strain microscopy. Journal of Applied Physics, 2012, 112, .	2.5	25
88	Electroelastic fields in artificially created vortex cores in epitaxial BiFeO3 thin films. Applied Physics Letters, 2015, 107, .	3.3	25
89	Ferroelectric Selfâ€Poling, Switching, and Monoclinic Domain Configuration in BiFeO ₃ Thin Films. Advanced Functional Materials, 2016, 26, 5166-5173.	14.9	25
90	Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices. ACS Applied Materials & Samp; Interfaces, 2017, 9, 40949-40958.	8.0	24

#	Article	lF	CITATIONS
91	Designing Morphotropic Phase Composition in BiFeO ₃ . Nano Letters, 2019, 19, 1033-1038.	9.1	24
92	Machine Detection of Enhanced Electromechanical Energy Conversion in PbZr _{0.2} Ti _{0.8} O ₃ Thin Films. Advanced Materials, 2018, 30, e1800701.	21.0	23
93	Probing local electrochemistry via mechanical cyclic voltammetry curves. Nano Energy, 2021, 81, 105592.	16.0	23
94	Evolution of a stable polarization state in lead zirconate titanate ceramics by repeated partial switching. Applied Physics Letters, 2005, 87, 212901.	3.3	22
95	Structural Consequences of Ferroelectric Nanolithography. Nano Letters, 2011, 11, 3080-3084.	9.1	22
96	Understanding Electric Double-Layer Gating Based on Ionic Liquids: from Nanoscale to Macroscale. ACS Applied Materials & Double-Layer Gating Based on Ionic Liquids: from Nanoscale to Macroscale.	8.0	21
97	Thickness profiles through fatigued bulk ceramic lead zirconate titanate. Journal of Applied Physics, 2006, 100, 114117.	2.5	20
98	Scanning probes for new energy materials: Probing local structure and function. MRS Bulletin, 2012, 37, 633-637.	3.5	20
99	Oxygen Vacancy Injection as a Pathway to Enhancing Electromechanical Response in Ferroelectrics. Advanced Materials, 2022, 34, e2106426.	21.0	20
100	Toward Quantitative Electrochemical Measurements on the Nanoscale by Scanning Probe Microscopy: Environmental and Current Spreading Effects. ACS Nano, 2013, 7, 8175-8182.	14.6	19
101	In Situ Electrochemical Dilatometry of Phosphate Anion Electrosorption. Environmental Science and Technology Letters, 2018, 5, 745-749.	8.7	19
102	Hysteretic order-disorder transitions of ionic liquid double layer structure on graphite. Nano Energy, 2019, 60, 886-893.	16.0	19
103	Machine learning-based multidomain processing for texture-based image segmentation and analysis. Applied Physics Letters, 2020, 116, .	3.3	19
104	High-Frequency Electromechanical Imaging of Ferroelectrics in a Liquid Environment. ACS Nano, 2012, 6, 5559-5565.	14.6	18
105	Band excitation Kelvin probe force microscopy utilizing photothermal excitation. Applied Physics Letters, 2015, 106, .	3.3	18
106	Selective patterning of out-of-plane piezoelectricity in MoTe2 via focused ion beam. Nano Energy, 2021, 79, 105451.	16.0	17
107	Tuning Susceptibility via Misfit Strain in Relaxed Morphotropic Phase Boundary PbZr _{1â€x} Ti _x O ₃ Epitaxial Thin Films. Advanced Materials Interfaces, 2014, 1, 1400098.	3.7	16
108	Structure of the Electrical Double Layer at the Interface between an Ionic Liquid and Tungsten Oxide in Ion-Gated Transistors. Journal of Physical Chemistry Letters, 2020, 11, 3257-3262.	4.6	16

#	Article	IF	Citations
109	Ionic Control over Ferroelectricity in 2D Layered van der Waals Capacitors. ACS Applied Materials & Lamp; Interfaces, 2022, 14, 3018-3026.	8.0	16
110	Near electrode fatigue in lead zirconate titanate ceramics. European Physical Journal Special Topics, 2005, 128, 97-103.	0.2	15
111	Focused-ion-beam induced damage in thin films of complex oxide BiFeO3. APL Materials, 2014, 2, .	5.1	15
112	Probing Local Electromechanical Effects in Highly Conductive Electrolytes. ACS Nano, 2012, 6, 10139-10146.	14.6	14
113	Manipulating Ferroelectrics through Changes in Surface and Interface Properties. ACS Applied Materials & Samp; Interfaces, 2017, 9, 39736-39746.	8.0	14
114	Dynamic Manipulation in Piezoresponse Force Microscopy: Creating Nonequilibrium Phases with Large Electromechanical Response. ACS Nano, 2020, 14, 10569-10577.	14.6	14
115	Local Strain and Polarization Mapping in Ferrielectric Materials. ACS Applied Materials & Description of the Interfaces, 2020, 12, 38546-38553.	8.0	14
116	Current-voltage characteristics for lead zirconate titanate bulk ceramics. Journal of Applied Physics, 2008, 104, 054120.	2.5	12
117	To switch or not to switch – a machine learning approach for ferroelectricity. Nanoscale Advances, 2020, 2, 2063-2072.	4.6	12
118	In situ and operando forceâ€based atomic force microscopy for probing local functionality in energy storage materials. Electrochemical Science Advances, 2022, 2, e2100038.	2.8	12
119	xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Mith/Mith/Math/Math/Math/Math/Math/Math/Math/Ma	2.4	12
120	Nanoscale Control of Polar Surface Phases in Layered van der Waals CulnP ₂ S ₆ . ACS Nano, 2022, 16, 2452-2460.	14.6	12
121	Electrochemical Strain Microscopy: Probing Electrochemical Transformations in Nanoscale Volumes. Microscopy Today, 2012, 20, 10-15.	0.3	11
122	Impact of gate geometry on ionic liquid gated ionotronic systems. APL Materials, 2017, 5, .	5.1	11
123	Unit cell orientation of tetragonal-like BiFeO ₃ thin films grown on highly miscut LaAlO ₃ substrates. Applied Physics Letters, 2013, 102, 221910.	3.3	10
124	Signal Origin of Electrochemical Strain Microscopy and Link to Local Chemical Distribution in Solid State Electrolytes. Small Methods, 2021, 5, 2001279.	8.6	10
125	Exploring Polarization Rotation Instabilities in Superâ€Tetragonal BiFeO ₃ Epitaxial Thin Films and Their Technological Implications. Advanced Electronic Materials, 2016, 2, 1600307.	5.1	9
126	Effect of defects on reaction of NiO surface with Pb-contained solution. Scientific Reports, 2017, 7, 44805.	3.3	9

#	Article	IF	Citations
127	Understanding electrochemical cation insertion into prussian blue from electrode deformation and mass changes. Chemical Communications, 2021, 57, 6744-6747.	4.1	9
128	Unique Features of Polarization in Ferroelectric Ionic Conductors. Advanced Electronic Materials, 2022, 8, 2100810.	5.1	9
129	Ionically Active MXene Nanopore Actuators. Small, 2022, 18, e2105857.	10.0	9
130	Competing phases in epitaxial vanadium dioxide at nanoscale. APL Materials, 2019, 7, .	5.1	8
131	Ionic Gating of Ultrathin and Leaky Ferroelectrics. Advanced Materials Interfaces, 2019, 6, 1801723.	3.7	8
132	Deformation during Electrosorption and Insertion-Type Charge Storage: Origins, Characterization, and Design of Materials for High Power. ACS Energy Letters, 2020, 5, 3548-3559.	17.4	8
133	Quantitative Nanometerâ€Scale Mapping of Dielectric Tunability. Advanced Materials Interfaces, 2015, 2, 1500088.	3.7	7
134	NGenE 2021: Electrochemistry Is Everywhere. ACS Energy Letters, 2022, 7, 368-374.	17.4	6
135	Effect of Feâ€doping and electrical load on the defect structure of Pb(Zr _x Ti _{1â€"x})O ₃ ferroelectric ceramics. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 3839-3842.	0.8	5
136	Migration of Charged Defects in Local Depolarization Fields as a Mechanism of Aging in Ferroelectrics. Ferroelectrics, 2008, 370, 196-202.	0.6	5
137	Strain-driven autonomous control of cation distribution for artificial ferroelectrics. Science Advances, 2021, 7, .	10.3	5
138	In Situ Formation of Micron-Scale Li-Metal Anodes with High Cyclability. ECS Electrochemistry Letters, 2013, 3, A4-A7.	1.9	4
139	Piezoresponse Force Microscopy (PFM)., 2019,, 291-316.		4
140	Domains and Topological Defects in Layered Ferrielectric Materials: Implications for Nanoelectronics. ACS Applied Nano Materials, 2020, 3, 8161-8166.	5.0	4
141	ELECTROCHEMICAL STRAIN MICROSCOPY OF LI-ION AND LI-AIR BATTERY MATERIALS. World Scientific Series in Nanoscience and Nanotechnology, 2013, , 393-454.	0.1	3
142	Lowering of <i>T</i> c in Van Der Waals Layered Materials Under In-Plane Strain. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 253-258.	3.0	3
143	Progress on Emerging Ferroelectric Materials for Energy Harvesting, Storage and Conversion (Adv.) Tj ETQq $1\ 1\ 0$.	784314 rş 19.5	gBŢ /Overloc
144	In situ Electrochemical TEM for Quantitative Nanoscale Imaging Dynamics of Solid Electrolyte Interphase and Lithium Electrodeposition. Microscopy and Microanalysis, 2015, 21, 2437-2438.	0.4	2

#	Article	IF	CITATIONS
145	Electroactuators: from understanding to micro-robotics and energy conversion: general discussion. Faraday Discussions, 2017, 199, 525-545.	3.2	2
146	lon movement in thin Nafion films under an applied electric field. Applied Physics Letters, 2018, $113,105$.	3.3	2
147	Preface to Special Topic: Piezoresponse Force Microscopy. Journal of Applied Physics, 2015, 118, .	2.5	1
148	Aging in Ferroelectrics, a Drift Approach. Applications of Ferroelectrics, IEEE International Symposium on, 2006, , .	0.0	0
149	Unipolar and sesquipolar electrical fatigue in PZT. Applications of Ferroelectrics, IEEE International Symposium on, 2007, , .	0.0	0
150	Interfacial Structure in Multiferroic BiFeO3 Thin Films. Microscopy and Microanalysis, 2009, 15, 1028-1029.	0.4	0
151	Quantitative Aberration-Corrected STEM for Studies of Oxide Superlattices and Topological Defects in Layered Ferroelectrics. Microscopy and Microanalysis, 2020, 26, 1194-1195.	0.4	0