
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4141799/publications.pdf Version: 2024-02-01

SHI CHEN

#	Article	IF	CITATIONS
1	Surface Passivation Toward Efficient and Stable Perovskite Solar Cells. Energy and Environmental Materials, 2023, 6, .	7.3	46
2	Vacuumâ€Assisted Preparation of Highâ€Quality Quasiâ€2D Perovskite Thin Films for Largeâ€Area Lightâ€Emit Diodes. Advanced Functional Materials, 2022, 32, 2107644.	ting 7.8	19
3	Managing Phase Orientation and Crystallinity of Printed Dion–Jacobson 2D Perovskite Layers via Controlling Crystallization Kinetics. Advanced Functional Materials, 2022, 32, .	7.8	33
4	In Operando Neutron Scattering Multipleâ€5cale Studies of Lithiumâ€ion Batteries. Small, 2022, 18, e2107491.	5.2	11
5	Anodized Steel: The Most Promising Bifunctional Electrocatalyst for Alkaline Water Electrolysis in Industry. Advanced Functional Materials, 2022, 32, .	7.8	37
6	Amphipathic Molecules Endowing Highly Structure Robust and Fast Kinetic Vanadiumâ€Based Cathode for Highâ€Performance Zincâ€ion Batteries. Small Structures, 2022, 3, .	6.9	19
7	Multidimensional Perovskite for Visible Light Driven Hydrogen Production in Aqueous HI Solution. ACS Applied Energy Materials, 2022, 5, 207-213.	2.5	4
8	Mechanistic insights into the pseudocapacitive performance of bronze-type vanadium dioxide with mono/multi-valent cations intercalation. Journal of Materials Chemistry A, 2022, 10, 10439-10451.	5.2	14
9	Waferâ€Scale 2Hâ€MoS ₂ Monolayer for High Surfaceâ€enhanced Raman Scattering Performance: Chargeâ€Transfer Coupled with Molecule Resonance. Advanced Materials Technologies, 2022, 7, .	3.0	14
10	Dynamic Reversible Evolution of Solid Electrolyte Interface in Nonflammable Triethyl Phosphate Electrolyte Enabling Safe and Stable Potassiumâ€ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	32
11	Precursor formula engineering enabling high quality solution processed C60 films for efficient and stable inverted perovskite solar cells. Chemical Engineering Journal, 2022, 446, 136897.	6.6	6
12	Natureâ€inspired materials and designs for flexible lithiumâ€ion batteries. , 2022, 4, 878-900.		25
13	Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films. Nature Energy, 2021, 6, 38-45.	19.8	342
14	Boosting the efficiency of quasi-2D perovskites light-emitting diodes by using encapsulation growth method. Nano Energy, 2021, 80, 105511.	8.2	54
15	Deep surface passivation for efficient and hydrophobic perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 2919-2927.	5.2	74
16	Direct coherent multi-ink printing of fabric supercapacitors. Science Advances, 2021, 7, .	4.7	95
17	Multiâ€Phase Heterostructure of CoNiP/Co <i>_x</i> P for Enhanced Hydrogen Evolution Under Alkaline and Seawater Conditions by Promoting H ₂ O Dissociation. Small, 2021, 17, e2007557.	5.2	83
18	Ambient Inkjetâ€Printed Highâ€Efficiency Perovskite Solar Cells: Manipulating the Spreading and Crystallization Behaviors of Picoliter Perovskite Droplets. Solar Rrl, 2021, 5, 2100106.	3.1	24

#	Article	IF	CITATIONS
19	Aluminum-Based Surface Polymerization on Carbon Dots with Aggregation-Enhanced Luminescence. Journal of Physical Chemistry Letters, 2021, 12, 4530-4536.	2.1	16
20	High Catalytic Performance of Au/Bi ₂ O ₃ for Preferential Oxidation of CO in H ₂ . ACS Applied Materials & Interfaces, 2021, 13, 29532-29540.	4.0	18
21	Stable and Efficient Blueâ€Emitting CsPbBr ₃ Nanoplatelets with Potassium Bromide Surface Passivation. Small, 2021, 17, e2101359.	5.2	41
22	Crystal Orientation Modulation and Defect Passivation for Efficient and Stable Methylammonium-Free Dion-Jacobson Quasi-2D Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 29567-29575.	4.0	24
23	Phase Transition Hysteresis of Tungsten Doped VO ₂ Synergistically Boosts the Function of Smart Windows in Ambient Conditions. ACS Applied Electronic Materials, 2021, 3, 3648-3656.	2.0	18
24	Development of Perovskite Oxideâ€Based Electrocatalysts for Oxygen Evolution Reaction. Small, 2021, 17, e2101605.	5.2	71
25	Waterâ€Soluble Conjugated Polyelectrolyte Hole Transporting Layer for Efficient Skyâ€Blue Perovskite Lightâ€Emitting Diodes. Small, 2021, 17, e2101477.	5.2	29
26	Antisolvent Engineering to Optimize Grain Crystallinity and Holeâ€Blocking Capability of Perovskite Films for Highâ€Performance Photovoltaics. Advanced Materials, 2021, 33, e2102816.	11.1	61
27	Vanadium dioxide for thermochromic smart windows in ambient conditions. Materials Today Energy, 2021, 21, 100827.	2.5	22
28	Thermalâ€Responsive and Fireâ€Resistant Materials for Highâ€Safety Lithiumâ€Ion Batteries. Small, 2021, 17, e2103679.	5.2	35
29	Direct Surface Passivation of Perovskite Film by 4-Fluorophenethylammonium Iodide toward Stable and Efficient Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2021, 13, 2558-2565.	4.0	71
30	A highly active defect engineered Cl-doped carbon catalyst for the N ₂ reduction reaction. Journal of Materials Chemistry A, 2021, 9, 5807-5814.	5.2	12
31	Development of Electrocatalysts for Efficient Nitrogen Reduction Reaction under Ambient Condition. Advanced Functional Materials, 2021, 31, 2008983.	7.8	124
32	High throughput screening of novel tribromide perovskite materials for high-photovoltage solar cells. Journal of Materials Chemistry A, 2021, 9, 25502-25512.	5.2	8
33	Development of Perovskite Oxideâ€Based Electrocatalysts for Oxygen Evolution Reaction (Small) Tj ETQq1 1 0.7	84314 rg	BT 10verlock
34	Observation and Suppression of Stacking Interface States in Sandwich-Structured Quantum Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 56630-56637.	4.0	5
35	Controlling the crystallization dynamics of photovoltaic perovskite layers on larger-area coatings. Energy and Environmental Science, 2020, 13, 4666-4690.	15.6	79
36	Surface Reconstruction and Phase Transition on Vanadium–Cobalt–Iron Trimetal Nitrides to Form Active Oxyhydroxide for Enhanced Electrocatalytic Water Oxidation. Advanced Energy Materials, 2020, 10, 2002464.	10.2	155

#	Article	IF	CITATIONS
37	Oxygen Evolution Reaction: Surface Reconstruction and Phase Transition on Vanadium–Cobalt–Iron Trimetal Nitrides to Form Active Oxyhydroxide for Enhanced Electrocatalytic Water Oxidation (Adv.) Tj ETQq1	10.78043214	g B T /Overlo
38	Vertically Aligned 2D/3D Pb–Sn Perovskites with Enhanced Charge Extraction and Suppressed Phase Segregation for Efficient Printable Solar Cells. ACS Energy Letters, 2020, 5, 1386-1395.	8.8	111
39	<i>In Situ</i> Interface Engineering for Highly Efficient Electron-Transport-Layer-Free Perovskite Solar Cells. Nano Letters, 2020, 20, 5799-5806.	4.5	67
40	Highly Efficient and Stable GABrâ€Modified Idealâ€Bandgap (1.35 eV) Sn/Pb Perovskite Solar Cells Achieve 20.63% Efficiency with a Record Small <i>V</i> _{oc} Deficit of 0.33 V. Advanced Materials, 2020, 32, e1908107.	11.1	101
41	Simplified Compact Perovskite Solar Cells with Efficiency of 19.6% via Interface Engineering. Energy and Environmental Materials, 2020, 3, 5-11.	7.3	10
42	Understanding the Interplay of Binary Organic Spacer in Ruddlesden–Popper Perovskites toward Efficient and Stable Solar Cells. Advanced Functional Materials, 2020, 30, 1907759.	7.8	31
43	Conjugated polyelectrolyte with potassium cations enables inverted perovskite solar cells with an efficiency over 20%. Journal of Materials Chemistry A, 2020, 8, 8238-8243.	5.2	33
44	A Depth-Profiling Study on the Solid Electrolyte Interface: Bis(fluorosulfuryl)imide Anion toward Improved K ⁺ Storage. ACS Applied Energy Materials, 2019, 2, 7942-7951.	2.5	51
45	Accelerating the Screening of Perovskite Compositions for Photovoltaic Applications through Highâ€Throughput Inkjet Printing. Advanced Functional Materials, 2019, 29, 1905487.	7.8	37
46	Compositional and Morphological Changes in Water-Induced Early-Stage Degradation in Lead Halide Perovskites. Coatings, 2019, 9, 535.	1.2	23
47	Joule heating driven infrared switching in flexible VO ₂ nanoparticle films with reduced energy consumption for smart windows. Journal of Materials Chemistry A, 2019, 7, 4516-4524.	5.2	44
48	Organic Monomolecular Layers Enable Energy-Level Matching for Efficient Hole Transporting Layer Free Inverted Perovskite Solar Cells. ACS Nano, 2019, 13, 1625-1634.	7.3	41
49	Gate-controlled VO ₂ phase transition for high-performance smart windows. Science Advances, 2019, 5, eaav6815.	4.7	160
50	Binary organic spacer-based quasi-two-dimensional perovskites with preferable vertical orientation and efficient charge transport for high-performance planar solar cells. Journal of Materials Chemistry A, 2019, 7, 9542-9549.	5.2	50
51	Assembling Mesoscaleâ€5tructured Organic Interfaces in Perovskite Photovoltaics. Advanced Materials, 2019, 31, e1806516.	11.1	16
52	Exploring the Stability of Novel Wide Bandgap Perovskites by a Robot Based High Throughput Approach. Advanced Energy Materials, 2018, 8, 1701543.	10.2	75
53	Aligned and Graded Typeâ€II Ruddlesden–Popper Perovskite Films for Efficient Solar Cells. Advanced Energy Materials, 2018, 8, 1800185.	10.2	247
54	Robot-Based High-Throughput Engineering of Alcoholic Polymer: Fullerene Nanoparticle Inks for an Eco-Friendly Processing of Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 23225-23234.	4.0	45

#	Article	IF	CITATIONS
55	Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing. Nature Communications, 2017, 8, 14541.	5.8	298
56	Temperature effect of the compact TiO2 layer in planar perovskite solar cells: An interfacial electrical, optical and carrier mobility study. Solar Energy Materials and Solar Cells, 2017, 163, 242-249.	3.0	36
57	"Electron/Ion Sponge―Like V-Based Polyoxometalate: Toward High-Performance Cathode for Rechargeable Sodium Ion Batteries. ACS Nano, 2017, 11, 6911-6920.	7.3	95
58	Suppression of Hysteresis Effects in Organohalide Perovskite Solar Cells. Advanced Materials Interfaces, 2017, 4, 1700007.	1.9	57
59	Evolution of hydrogen by few-layered black phosphorus under visible illumination. Journal of Materials Chemistry A, 2017, 5, 24874-24879.	5.2	45
60	Modulating Excitonic Recombination Effects through Oneâ€6tep Synthesis of Perovskite Nanoparticles for Lightâ€Emitting Diodes. ChemSusChem, 2017, 10, 3818-3824.	3.6	12
61	Sequential insulator-metal-insulator phase transitions of <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mmi:math mathvariant="normal">V<mmi:msub><mmi:mi mathvariant="normal">O<mmi:mn>2</mmi:mn></mmi:mi </mmi:msub></mmi:math </mmi:math 	1.1	53
62	Giggered by hydrogen doping. Physical Review 8, 2017, 96, . Overcoming the Interface Losses in Planar Heterojunction Perovskiteâ€Based Solar Cells. Advanced Materials, 2016, 28, 5112-5120.	11.1	188
63	Extending the environmental lifetime of unpackaged perovskite solar cells through interfacial design. Journal of Materials Chemistry A, 2016, 4, 11604-11610.	5.2	49
64	Exploring the Limiting Open ircuit Voltage and the Voltage Loss Mechanism in Planar CH ₃ NH ₃ PbBr ₃ Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1600132.	10.2	71
65	Photoinduced degradation of methylammonium lead triiodide perovskite semiconductors. Journal of Materials Chemistry A, 2016, 4, 15896-15903.	5.2	119
66	High brightness formamidinium lead bromide perovskite nanocrystal light emitting devices. Scientific Reports, 2016, 6, 36733.	1.6	134
67	Hierarchical Porous LiNi1/3Co1/3Mn1/3O2 Nano-/Micro Spherical Cathode Material: Minimized Cation Mixing and Improved Li+ Mobility for Enhanced Electrochemical Performance. Scientific Reports, 2016, 6, 25771.	1.6	178
68	The Dynamic Phase Transition Modulation of Ion‣iquid Gating VO ₂ Thin Film: Formation, Diffusion, and Recovery of Oxygen Vacancies. Advanced Functional Materials, 2016, 26, 3532-3541.	7.8	52
69	High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles. ACS Nano, 2016, 10, 6623-6630.	7.3	347
70	Fill Factor Losses in Cu ₂ ZnSn(S <i>_x</i> Se _{1â^'<i>x</i>}) ₄ Solar Cells: Insights from Physical and Electrical Characterization of Devices and Exfoliated Films. Advanced Energy Materials, 2016, 6, 1501609.	10.2	84
71	Lead-Free MA ₂ CuCl _{<i>x</i>} Br _{4–<i>x</i>} Hybrid Perovskites. Inorganic Chemistry, 2016, 55, 1044-1052.	1.9	457
72	Exciton dynamics in luminescent carbon nanodots: Electron–hole exchange interaction. Nano Research, 2016, 9, 549-559.	5.8	9

#	Article	lF	CITATIONS
73	Aqueous Rechargeable Alkaline Co _{<i>x</i>} Ni _{2–<i>x</i>} S ₂ /TiO ₂ Battery. ACS Nano, 2016, 10, 1007-1016.	7.3	123
74	Colorimetric Detection of Creatinine Based on Plasmonic Nanoparticles via Synergistic Coordination Chemistry. Small, 2015, 11, 4104-4110.	5.2	54
75	Printed Smart Photovoltaic Window Integrated with an Energyâ€Saving Thermochromic Layer. Advanced Optical Materials, 2015, 3, 1524-1529.	3.6	43
76	Inverted, Environmentally Stable Perovskite Solar Cell with a Novel Lowâ€Cost and Waterâ€Free PEDOT Holeâ€Extraction Layer. Advanced Energy Materials, 2015, 5, 1500543.	10.2	81
77	Decoupling the Lattice Distortion and Charge Doping Effects on the Phase Transition Behavior of VO2 by Titanium (Ti4+) Doping. Scientific Reports, 2015, 5, 9328.	1.6	84
78	Defect Engineered g-C ₃ N ₄ for Efficient Visible Light Photocatalytic Hydrogen Production. Chemistry of Materials, 2015, 27, 4930-4933.	3.2	401
79	Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films. Journal of Physical Chemistry Letters, 2015, 6, 1396-1402.	2.1	141
80	Interfacial Electron Transfer Barrier at Compact TiO ₂ /CH ₃ NH ₃ PbI ₃ Heterojunction. Small, 2015, 11, 3606-3613.	5.2	196
81	Calculation Evidence of Staged Mott and Peierls Transitions in VO ₂ Revealed by Mapping Reduced-Dimension Potential Energy Surface. Journal of Physical Chemistry Letters, 2015, 6, 3650-3656.	2.1	23
82	Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes. Beilstein Journal of Nanotechnology, 2014, 5, 517-523.	1.5	62
83	Fine crystalline VO2 nanoparticles: synthesis, abnormal phase transition temperatures and excellent optical properties of a derived VO2 nanocomposite foil. Journal of Materials Chemistry A, 2014, 2, 2718.	5.2	204
84	Energy level alignment at the methylammonium lead iodide/copper phthalocyanine interface. APL Materials, 2014, 2, .	2.2	80
85	The synthesis and performance of Zr-doped and W–Zr-codoped VO ₂ nanoparticles and derived flexible foils. Journal of Materials Chemistry A, 2014, 2, 15087-15093.	5.2	131
86	Crystallised mesoporous TiO ₂ (A)–VO ₂ (M/R) nanocomposite films with self-cleaning and excellent thermochromic properties. Journal of Materials Chemistry A, 2014, 2, 11874-11884.	5.2	67
87	Novel self-assembled 2D networks based on zinc metal ion co-ordination: synthesis and comparative study with 3D networks. RSC Advances, 2014, 4, 17680-17693.	1.7	8
88	Unraveling Mechanism on Reducing Thermal Hysteresis Width of VO ₂ by Ti Doping: A Joint Experimental and Theoretical Study. Journal of Physical Chemistry C, 2014, 118, 18938-18944.	1.5	64
89	F-doped VO2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability. Physical Chemistry Chemical Physics, 2013, 15, 11723.	1.3	160
90	The visible transmittance and solar modulation ability of VO2 flexible foils simultaneously improved by Ti doping: an optimization and first principle study. Physical Chemistry Chemical Physics, 2013, 15, 17537.	1.3	101

#	Article	IF	CITATIONS
91	Hierarchical TiO2 nanobelts@MnO2 ultrathin nanoflakes core–shell array electrode materials for supercapacitors. RSC Advances, 2013, 3, 14413.	1.7	98
92	Terahertz conductivity of topological surface states in Bi1.5Sb0.5Te1.8Se1.2. Scientific Reports, 2013, 3, 3513.	1.6	51