J Scott Hosking

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4141615/publications.pdf Version: 2024-02-01

I SCOTT HOSKING

#	Article	IF	CITATIONS
1	Convolutional conditional neural processes for local climate downscaling. Geoscientific Model Development, 2022, 15, 251-268.	3.6	10
2	Seasonal Arctic sea ice forecasting with probabilistic deep learning. Nature Communications, 2021, 12, 5124.	12.8	84
3	Regional disparities and seasonal differences in climate risk to rice labour. Environmental Research Letters, 2021, 16, 124004.	5.2	4
4	Improvements in Circumpolar Southern Hemisphere Extratropical Atmospheric Circulation in CMIP6 Compared to CMIP5. Earth and Space Science, 2020, 7, e2019EA001065.	2.6	36
5	Polar stratospheric clouds initiated by mountain waves in a global chemistry–climate model: a missing piece in fully modelling polar stratospheric ozone depletion. Atmospheric Chemistry and Physics, 2020, 20, 12483-12497.	4.9	8
6	Projecting ozone hole recovery using an ensemble of chemistry–climate models weighted by model performance and independence. Atmospheric Chemistry and Physics, 2020, 20, 9961-9977.	4.9	16
7	The Dominant Role of Extreme Precipitation Events in Antarctic Snowfall Variability. Geophysical Research Letters, 2019, 46, 3502-3511.	4.0	98
8	Summer Drivers of Atmospheric Variability Affecting Ice Shelf Thinning in the Amundsen Sea Embayment, West Antarctica. Geophysical Research Letters, 2018, 45, 4124-4133.	4.0	32
9	Changes in European wind energy generation potential within a 1.5 °C warmer world. Environmental Research Letters, 2018, 13, 054032.	5.2	31
10	Unprecedented springtime retreat of Antarctic sea ice in 2016. Geophysical Research Letters, 2017, 44, 6868-6875.	4.0	198
11	Accumulation in coastal West Antarctic ice core records and the role of cyclone activity. Geophysical Research Letters, 2017, 44, 9084-9092.	4.0	4
12	Variability and trends in the Southern Hemisphere high latitude, quasiâ€stationary planetary waves. International Journal of Climatology, 2017, 37, 2325-2336.	3.5	21
13	Causes of the Antarctic region record high temperature at Signy Island, 30th January 1982. Atmospheric Science Letters, 2017, 18, 491-496.	1.9	18
14	An assessment of the Polar Weather Research and Forecasting (WRF) model representation of nearâ€surface meteorological variables over West Antarctica. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1532-1548.	3.3	26
15	Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 2016, 535, 411-415.	27.8	538
16	Future circulation changes off West Antarctica: Sensitivity of the Amundsen Sea Low to projected anthropogenic forcing. Geophysical Research Letters, 2016, 43, 367-376.	4.0	59
17	Antarctic sea ice increase consistent with intrinsic variability of the Amundsen Sea Low. Climate Dynamics, 2016, 46, 2391-2402.	3.8	97
18	The Amundsen Sea Low: Variability, Change, and Impact on Antarctic Climate. Bulletin of the American Meteorological Society, 2016, 97, 111-121.	3.3	226

J SCOTT HOSKING

#	Article	IF	CITATIONS
19	Orographic disturbances of surface winds over the shelf waters adjacent to South Georgia. Atmospheric Science Letters, 2015, 16, 50-55.	1.9	5
20	Sensitivity of tropical deep convection in global models: effects of horizontal resolution, surface constraints, and <scp>3D</scp> atmospheric nudging. Atmospheric Science Letters, 2015, 16, 148-154.	1.9	5
21	Inclusion of mountain-wave-induced cooling for the formation of PSCs over the Antarctic Peninsula in a chemistry–climate model. Atmospheric Chemistry and Physics, 2015, 15, 1071-1086.	4.9	27
22	Twentieth century increase in snowfall in coastal West Antarctica. Geophysical Research Letters, 2015, 42, 9387-9393.	4.0	70
23	Recent changes in Antarctic Sea Ice. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140163.	3.4	122
24	Sources of uncertainty in projections of twenty-first century westerly wind changes over the Amundsen Sea, West Antarctica, in CMIP5 climate models. Climate Dynamics, 2014, 43, 2093-2104.	3.8	23
25	Met Office Unified Model highâ€resolution simulations of a strong wind event in Antarctica. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 2287-2297.	2.7	46
26	The Influence of the Amundsen–Bellingshausen Seas Low on the Climate of West Antarctica and Its Representation in Coupled Climate Model Simulations. Journal of Climate, 2013, 26, 6633-6648.	3.2	222
27	Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling. Journal of Geophysical Research F: Earth Surface, 2013, 118, 315-330.	2.8	116
28	The Amundsen Sea low. International Journal of Climatology, 2013, 33, 1818-1829.	3.5	203
29	An Initial Assessment of Antarctic Sea Ice Extent in the CMIP5 Models. Journal of Climate, 2013, 26, 1473-1484.	3.2	261
30	Temporal and spatial evolution of the Antarctic sea ice prior to the September 2012 record maximum extent. Geophysical Research Letters, 2013, 40, 5894-5898.	4.0	30
31	Strong Dynamical Modulation of the Cooling of the Polar Stratosphere Associated with the Antarctic Ozone Hole. Journal of Climate, 2012, 26, 662-668.	3.2	18
32	Tropical convective transport and the Walker circulation. Atmospheric Chemistry and Physics, 2012, 12, 9791-9797.	4.9	20
33	Possible Dynamical Mechanisms for Southern Hemisphere Climate Change due to the Ozone Hole. Journals of the Atmospheric Sciences, 2012, 69, 2917-2932.	1.7	30
34	Representation of tropical deep convection in atmospheric models – Part 1: Meteorology and comparison with satellite observations. Atmospheric Chemistry and Physics, 2011, 11, 2765-2786.	4.9	36
35	Representation of tropical deep convection in atmospheric models – Part 2: Tracer transport. Atmospheric Chemistry and Physics, 2011, 11, 8103-8131.	4.9	46
36	Modelling deep convection and its impacts on the tropical tropopause layer. Atmospheric Chemistry and Physics, 2010, 10, 11175-11188.	4.9	21

#	Article	IF	CITATIONS
37	Localized impacts and economic implications from high temperature disruption days under climate change. Climate Resilience and Sustainability, 0, , .	2.3	1