Sumeet Walia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4141435/publications.pdf Version: 2024-02-01

SUMFET WALLA

#	Article	IF	CITATIONS
1	Sulfurization Engineering of Oneâ€5tep Lowâ€Temperature MoS ₂ and WS ₂ Thin Films for Memristor Device Applications. Advanced Electronic Materials, 2022, 8, 2100515.	2.6	14
2	Device Geometry Insights for Efficient Electrically Driven Insulatorâ€ŧoâ€Metal Transition in Vanadium Dioxide Thinâ€Films. Advanced Electronic Materials, 2022, 8, 2100428.	2.6	5
3	Soft Xâ€ray Detectors Based on SnS Nanosheets for the Water Window Region. Advanced Functional Materials, 2022, 32, 2105038.	7.8	11
4	Mixed Ionicâ€Electronic Charge Transport in Layered Blackâ€Phosphorus for Lowâ€Power Memory. Advanced Functional Materials, 2022, 32, 2107068.	7.8	16
5	Illuminating the biochemical interaction of antimicrobial few-layer black phosphorus with microbial cells using synchrotron macro-ATR-FTIR. Journal of Materials Chemistry B, 2022, 10, 7527-7539.	2.9	8
6	Lightâ€operated Onâ€chip Autonomous Vision Using Lowâ€dimensional Material Systems. Advanced Materials Technologies, 2022, 7, .	3.0	5
7	Nicotine Sensors for Wearable Battery-Free Monitoring of Vaping. ACS Sensors, 2022, 7, 82-88.	4.0	9
8	Surface Functionalization of WS ₂ Nanosheets with Alkyl Chains for Enhancement of Dispersion Stability and Tribological Properties. ACS Applied Materials & Interfaces, 2022, 14, 1334-1346.	4.0	10
9	Nonvolatile Resistive Switching in Layered InSe via Electrochemical Cation Diffusion. Advanced Electronic Materials, 2022, 8, .	2.6	8
10	Doped 2D SnS materials derived from liquid metal-solution for tunable optoelectronic devices. Nanoscale, 2022, 14, 6802-6810.	2.8	17
11	Atomically Thin Antimonyâ€Doped Indium Oxide Nanosheets for Optoelectronics. Advanced Optical Materials, 2022, 10, .	3.6	12
12	Wearable Labelâ€Free Optical Biodetectors: Progress and Perspectives. Advanced Photonics Research, 2021, 2, 2000076.	1.7	18
13	Fully Light ontrolled Memory and Neuromorphic Computation in Layered Black Phosphorus. Advanced Materials, 2021, 33, e2004207.	11.1	147
14	Ultrathin oxysulfide semiconductors from liquid metal: a wet chemical approach. Journal of Materials Chemistry C, 2021, 9, 11815-11826.	2.7	19
15	Rapid and Selective Biomarker Detection with Conductometric Sensors. Small, 2021, 17, e2005582.	5.2	20
16	Neuromorphic Imaging: Fully Lightâ€Controlled Memory and Neuromorphic Computation in Layered Black Phosphorus (Adv. Mater. 10/2021). Advanced Materials, 2021, 33, 2170074.	11.1	0
17	Amorphous Metal Oxide Bilayers to Avoid Sneakâ€Path Currents for Highâ€Density Resistive Memory Arrays. Advanced Intelligent Systems, 2021, 3, 2000222.	3.3	4
18	Broad-Spectrum Solvent-free Layered Black Phosphorus as a Rapid Action Antimicrobial. ACS Applied Materials & Interfaces, 2021, 13, 17340-17352.	4.0	24

#	Article	IF	CITATIONS
19	A Visibleâ€Blind Photodetector and Artificial Optoelectronic Synapse Using Liquidâ€Metal Exfoliated ZnO Nanosheets. Advanced Optical Materials, 2021, 9, 2100449.	3.6	41
20	2D/3D Hybrid of MoS ₂ /GaN for a High-Performance Broadband Photodetector. ACS Applied Electronic Materials, 2021, 3, 2407-2414.	2.0	70
21	Antipathogenic properties and applications of low-dimensional materials. Nature Communications, 2021, 12, 3897.	5.8	63
22	Influence of Temperature on Photodetection Properties of Honeycombâ€like GaN Nanostructures. Advanced Materials Interfaces, 2021, 8, 2100593.	1.9	12
23	UV Photochromism in Transition Metal Oxides and Hybrid Materials. Small, 2021, 17, e2100621.	5.2	51
24	Black Phosphorus Nanoflakes Vertically Stacked on MoS ₂ Nanoflakes as Heterostructures for Photodetection. ACS Applied Nano Materials, 2021, 4, 6928-6935.	2.4	14
25	Ultrasensitive WSe ₂ field-effect transistor-based biosensor for label-free detection of cancer in point-of-care applications. 2D Materials, 2021, 8, 045005.	2.0	23
26	Black Phosphorus—Diketopyrrolopyrrole Polymer Semiconductor Hybrid for Enhanced Charge Transfer and Photodetection. Advanced Photonics Research, 2021, 2, 2100150.	1.7	3
27	High Gain Solutionâ€Processed Carbonâ€Free BiSI Chalcohalide Thin Film Photodetectors. Advanced Functional Materials, 2021, 31, 2104788.	7.8	30
28	3D Visibleâ€Lightâ€Driven Plasmonic Oxide Frameworks Deviated from Liquid Metal Nanodroplets. Advanced Functional Materials, 2021, 31, 2106397.	7.8	23
29	Alkali-Assisted Hydrothermal Exfoliation and Surfactant-Driven Functionalization of <i>h</i> -BN Nanosheets for Lubrication Enhancement. ACS Applied Nano Materials, 2021, 4, 9143-9154.	2.4	14
30	High- <i>k</i> 2D Sb ₂ O ₃ Made Using a Substrate-Independent and Low-Temperature Liquid-Metal-Based Process. ACS Nano, 2021, 15, 16067-16075.	7.3	24
31	Particle tracking simulation of an air channel transistor. AIP Advances, 2021, 11, .	0.6	2
32	Helicity-selective Raman scattering from in-plane anisotropic α-MoO3. Applied Physics Letters, 2021, 119, .	1.5	6
33	Charge injection in vertically stacked multi-layer black phosphorus. Applied Materials Today, 2020, 18, 100481.	2.3	1
34	Ordered-vacancy-enabled indium sulphide printed in wafer-scale with enhanced electron mobility. Materials Horizons, 2020, 7, 827-834.	6.4	27
35	Twoâ€Step Synthesis of Largeâ€Area 2D Bi ₂ S ₃ Nanosheets Featuring High Inâ€Plane Anisotropy. Advanced Materials Interfaces, 2020, 7, 2001131.	1.9	27
36	Phase change vanadium dioxide light sensors. Applied Materials Today, 2020, 21, 100833.	2.3	16

#	Article	IF	CITATIONS
37	Broadband Photodetectors: Liquidâ€Metal Synthesized Ultrathin SnS Layers for Highâ€Performance Broadband Photodetectors (Adv. Mater. 45/2020). Advanced Materials, 2020, 32, 2070338.	11.1	2
38	Artificial Somatosensors: Feedback Receptors for Electronic Skins. Advanced Intelligent Systems, 2020, 2, 2000094.	3.3	42
39	Liquidâ€Metal Synthesized Ultrathin SnS Layers for Highâ€Performance Broadband Photodetectors. Advanced Materials, 2020, 32, e2004247.	11.1	66
40	Artificial Somatosensors: Feedback Receptors for Electronic Skins. Advanced Intelligent Systems, 2020, 2, 2070106.	3.3	1
41	Monocrystalline Antimonene Nanosheets via Physical Vapor Deposition. Advanced Materials Interfaces, 2020, 7, 2001678.	1.9	14
42	Structural-Defect-Mediated Grafting of Alkylamine on Few-Layer MoS ₂ and Its Potential for Enhancement of Tribological Properties. ACS Applied Materials & Interfaces, 2020, 12, 30720-30730.	4.0	30
43	Electrically Activated UV-A Filters Based on Electrochromic MoO _{3–<i>x</i>} . ACS Applied Materials & Interfaces, 2020, 12, 16997-17003.	4.0	45
44	Liquid metal-based synthesis of high performance monolayer SnS piezoelectric nanogenerators. Nature Communications, 2020, 11, 3449.	5.8	128
45	Current Transport and Band Alignment Study of MoS ₂ /GaN and MoS ₂ /AlGaN Heterointerfaces for Broadband Photodetection Application. ACS Applied Electronic Materials, 2020, 2, 710-718.	2.0	43
46	Differential Work-Function Enabled Bifunctional Switching in Strontium Titanate Flexible Resistive Memories. ACS Applied Materials & Interfaces, 2020, 12, 7326-7333.	4.0	9
47	Multifunctional Optoelectronics via Harnessing Defects in Layered Black Phosphorus. Advanced Functional Materials, 2019, 29, 1901991.	7.8	97
48	Atomically Thin Ga ₂ S ₃ from Skin of Liquid Metals for Electrical, Optical, and Sensing Applications. ACS Applied Nano Materials, 2019, 2, 4665-4672.	2.4	72
49	Semiconductor-Free Field-Emission Nanoelectronics: Application in Air-Channel Transistors. , 2019, , .		1
50	Electron Emission Devices for Energyâ€Efficient Systems. Advanced Intelligent Systems, 2019, 1, 1900039.	3.3	16
51	Exciton-Driven Chemical Sensors Based on Excitation-Dependent Photoluminescent Two-Dimensional SnS. ACS Applied Materials & Interfaces, 2019, 11, 42462-42468.	4.0	42
52	Dual Selective Gas Sensing Characteristics of 2D α-MoO _{3–<i>x</i>} via a Facile Transfer Process. ACS Applied Materials & Interfaces, 2019, 11, 40189-40195.	4.0	47
53	Time and rate dependent synaptic learning in neuro-mimicking resistive memories. Scientific Reports, 2019, 9, 15404.	1.6	13
54	Optoelectronics: Multifunctional Optoelectronics via Harnessing Defects in Layered Black Phosphorus (Adv. Funct. Mater. 39/2019). Advanced Functional Materials, 2019, 29, 1970272.	7.8	2

#	Article	IF	CITATIONS
55	In Situ Nanostructural Analysis of Volatile Threshold Switching and Nonâ€Volatile Bipolar Resistive Switching in Mixedâ€Phased <i>a</i> â€VO <i>_x</i> Asymmetric Crossbars. Advanced Electronic Materials, 2019, 5, 1900605.	2.6	17
56	An Ultrasensitive Silicon Photonic Ion Sensor Enabled by 2D Plasmonic Molybdenum Oxide. Small, 2019, 15, e1805251.	5.2	31
57	Augmented band gap tunability in indium-doped zinc sulfide nanocrystals. Nanoscale, 2019, 11, 3154-3163.	2.8	15
58	Optically Stimulated Artificial Synapse Based on Layered Black Phosphorus. Small, 2019, 15, e1900966.	5.2	201
59	Large-area synthesis of 2D MoO _{3â^' <i>x</i>} for enhanced optoelectronic applications. 2D Materials, 2019, 6, 035031.	2.0	48
60	2D SnO/In ₂ O ₃ van der Waals Heterostructure Photodetector Based on Printed Oxide Skin of Liquid Metals. Advanced Materials Interfaces, 2019, 6, 1900007.	1.9	65
61	Generating strong room-temperature photoluminescence in black phosphorus using organic molecules. 2D Materials, 2019, 6, 015009.	2.0	15
62	Visible-Light-Triggered Reactive-Oxygen-Species-Mediated Antibacterial Activity of Peroxidase-Mimic CuO Nanorods. ACS Applied Nano Materials, 2018, 1, 1694-1704.	2.4	144
63	Solution-processable do-it-yourself switching devices (DIY devices) based on CuTCNQ metal-organic semiconductors. Applied Materials Today, 2018, 10, 12-17.	2.3	13
64	Black phosphorus: ambient degradation and strategies for protection. 2D Materials, 2018, 5, 032001.	2.0	119
65	Metal–Air Transistors: Semiconductor-Free Field-Emission Air-Channel Nanoelectronics. Nano Letters, 2018, 18, 7478-7484.	4.5	76
66	Data related to the nanoscale structural and compositional evolution in resistance change memories. Data in Brief, 2018, 21, 18-24.	0.5	4
67	Skin color-specific and spectrally-selective naked-eye dosimetry of UVA, B and C radiations. Nature Communications, 2018, 9, 3743.	5.8	89
68	Broadband light active MTCNQ-based metal–organic semiconducting hybrids for enhanced redox catalysis. Applied Materials Today, 2018, 13, 107-115.	2.3	16
69	Oxygen-deficient strontium titanate based stretchable resistive memories. Applied Materials Today, 2018, 13, 126-134.	2.3	17
70	Encapsulation-Free Stabilization of Few-Layer Black Phosphorus. ACS Applied Materials & Interfaces, 2018, 10, 24327-24331.	4.0	16
71	A Photonic Switch Based on a Hybrid Combination of Metallic Nanoholes and Phase-change Vanadium Dioxide. Scientific Reports, 2018, 8, 11106.	1.6	33
72	Inducing tunable switching behavior in a single memristor. Applied Materials Today, 2018, 11, 280-290.	2.3	21

#	Article	IF	CITATIONS
73	Reversible resistive switching behaviour in CVD grown, large area MoO _x . Nanoscale, 2018, 10, 19711-19719.	2.8	46
74	Effects of plasma-treatment on the electrical and optoelectronic properties of layered black phosphorus. Applied Materials Today, 2018, 12, 244-249.	2.3	38
75	Ambient Protection of Few‣ayer Black Phosphorus via Sequestration of Reactive Oxygen Species. Advanced Materials, 2017, 29, 1700152.	11.1	141
76	Soft exfoliation of 2D SnO with size-dependent optical properties. 2D Materials, 2017, 4, 025110.	2.0	59
77	Defining the role of humidity in the ambient degradation of few-layer black phosphorus. 2D Materials, 2017, 4, 015025.	2.0	110
78	Two-dimensional MoO ₃ via a top-down chemical thinning route. 2D Materials, 2017, 4, 035008.	2.0	14
79	Wafer-Scale Synthesis of Semiconducting SnO Monolayers from Interfacial Oxide Layers of Metallic Liquid Tin. ACS Nano, 2017, 11, 10974-10983.	7.3	122
80	Transparent amorphous strontium titanate resistive memories with transient photo-response. Nanoscale, 2017, 9, 14690-14702.	2.8	18
81	Role of Water in the Dynamic Crystallization of CuTCNQ for Enhanced Redox Catalysis (TCNQ =) Tj ETQq1 1 C).784314 rgBT	/Overlock 1
82	Degradation of black phosphorus is contingent on UV–blue light exposure. Npj 2D Materials and Applications, 2017, 1, .	3.9	95
83	Galvanic Replacement of Semiconducting CuTCNQF ₄ with Ag ⁺ lons to Enhance Electron Transfer Reaction. ChemistrySelect, 2017, 2, 9962-9969.	0.7	9
84	Insulator–metal transition in substrate-independent VO2 thin film for phase-change devices. Scientific Reports, 2017, 7, 17899.	1.6	63
85	Microstructure and dynamics of vacancy-induced nanofilamentary switching network in donor doped SrTiO _{3â^'<i>x</i>} memristors. Nanotechnology, 2016, 27, 505210.	1.3	39
86	Exfoliation Solvent Dependent Plasmon Resonances in Two-Dimensional Sub-Stoichiometric Molybdenum Oxide Nanoflakes. ACS Applied Materials & Interfaces, 2016, 8, 3482-3493.	4.0	111
87	Mechanically Tunable High Refractiveâ€Index Contrast TiO ₂ –PDMS Gratings. Advanced Optical Materials, 2015, 3, 1565-1569.	3.6	18
88	Donorâ€Induced Performance Tuning of Amorphous SrTiO ₃ Memristive Nanodevices: Multistate Resistive Switching and Mechanical Tunability. Advanced Functional Materials, 2015, 25, 3172-3182.	7.8	68
89	Stretchable and Tunable Microtectonic ZnO-Based Sensors and Photonics. Small, 2015, 11, 4532-4539.	5.2	54
90	Visibleâ€Blind UV Imaging with Oxygenâ€Deficient Zinc Oxide Flexible Devices. Advanced Electronic Materials, 2015, 1, 1500264.	2.6	14

3.8

67

#	Article	IF	CITATIONS
91	Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales. Applied Physics Reviews, 2015, 2, 011303.	5.5	303
92	Electric field induced surface-enhanced Raman spectroscopy for multianalyte detection. Physical Chemistry Chemical Physics, 2015, 17, 7095-7099.	1.3	11
93	Acoustic–Excitonic Coupling for Dynamic Photoluminescence Manipulation of Quasi <i>â€</i> 2D MoS ₂ Nanoflakes. Advanced Optical Materials, 2015, 3, 888-894.	3.6	39
94	Low-Temperature Fabrication of Alkali Metal–Organic Charge Transfer Complexes on Cotton Textile for Optoelectronics and Gas Sensing. Langmuir, 2015, 31, 1581-1587.	1.6	51
95	Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene. Small, 2015, 11, 640-652.	5.2	725
96	Nanoscale electro-mechanical dynamics of nano-crystalline platinum thin films: An <i>in situ</i> electrical nanoindentation study. Journal of Applied Physics, 2014, 116, .	1.1	13
97	Strain response of stretchable micro-electrodes: Controlling sensitivity with serpentine designs and encapsulation. Applied Physics Letters, 2014, 104, 021908.	1.5	47
98	Nanoscale Resistive Switching in Amorphous Perovskite Oxide (<i>aâ€</i> SrTiO ₃) Memristors. Advanced Functional Materials, 2014, 24, 6741-6750.	7.8	111
99	3-D nanorod arrays of metal–organic KTCNQ semiconductor on textiles for flexible organic electronics. RSC Advances, 2013, 3, 17654.	1.7	40
100	Semiconductors: Twoâ€Ðimensional Molybdenum Trioxide and Dichalcogenides (Adv. Funct. Mater.) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
101	Field Effect Biosensing Platform Based on 2D α-MoO ₃ . ACS Nano, 2013, 7, 9753-9760.	7.3	161
102	Enhanced Charge Carrier Mobility in Twoâ€Dimensional High Dielectric Molybdenum Oxide. Advanced Materials, 2013, 25, 109-114.	11.1	355
103	Twoâ€Dimensional Molybdenum Trioxide and Dichalcogenides. Advanced Functional Materials, 2013, 23, 3952-3970.	7.8	443
104	Enhanced Charge Carrier Mobility in Twoâ€Dimensional High Dielectric Molybdenum Oxide (Adv. Mater.) Tj ETQo	10 0 0 rgB ⁻ 11.1 rgB ⁻	T /Gverlock 1
105	Transition metal oxides – Thermoelectric properties. Progress in Materials Science, 2013, 58, 1443-1489.	16.0	302
106	MnO ₂ -Based Thermopower Wave Sources with Exceptionally Large Output Voltages. Journal of Physical Chemistry C, 2013, 117, 9137-9142.	1.5	71
107	Characterization of metal contacts for two-dimensional MoS2 nanoflakes. Applied Physics Letters, 2013, 103, .	1.5	144

108 Transparent functional oxide stretchable electronics: micro-tectonics enabled high strain electrodes. NPG Asia Materials, 2013, 5, e62-e62.

#	Article	IF	CITATIONS
109	ZnO based thermopower wave sources. Chemical Communications, 2012, 48, 7462.	2.2	75
110	Sb2Te3 and Bi2Te3 based thermopower wave sources. Energy and Environmental Science, 2011, 4, 3558.	15.6	71
111	Oscillatory Thermopower Waves Based on Bi ₂ Te ₃ Films. Advanced Functional Materials, 2011, 21, 2072-2079.	7.8	58
112	Hexagonal Ge Grown by Molecular Beam Epitaxy on Self-Assisted GaAs Nanowires. Crystal Growth and Design, 0, , .	1.4	2