Ulrike Garscha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4141343/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	12-Oxo-10-glutathionyl-5,8,14-eicosatrienoic acid (TOG10), a novel glutathione-containing eicosanoid generated via the 12-lipoxygenase pathway in human platelets. Prostaglandins and Other Lipid Mediators, 2021, 152, 106480.	1.9	2
2	Exploration of Long-Chain Vitamin E Metabolites for the Discovery of a Highly Potent, Orally Effective, and Metabolically Stable 5-LOX Inhibitor that Limits Inflammation. Journal of Medicinal Chemistry, 2021, 64, 11496-11526.	6.4	7
3	Simple heteroaryl modifications in the 4,5-diarylisoxazol-3-carboxylic acid scaffold favorably modulates the activity as dual mPGES-1/5-LO inhibitors with in vivo efficacy. Bioorganic Chemistry, 2021, 112, 104861.	4.1	6
4	<i>Candida albicans</i> â€induced leukotriene biosynthesis in neutrophils is restricted to the hyphal morphology. FASEB Journal, 2021, 35, e21820.	0.5	8
5	Modulation of microRNA processing by 5â€lipoxygenase. FASEB Journal, 2021, 35, e21193.	0.5	8
6	Exotoxins from Staphylococcus aureus activate 5-lipoxygenase and induce leukotriene biosynthesis. Cellular and Molecular Life Sciences, 2020, 77, 3841-3858.	5.4	16
7	Finding New Molecular Targets of Familiar Natural Products Using In Silico Target Prediction. International Journal of Molecular Sciences, 2020, 21, 7102.	4.1	10
8	Structural and mechanistic insights into 5-lipoxygenase inhibition by natural products. Nature Chemical Biology, 2020, 16, 783-790.	8.0	129
9	Discovery of Novel 5-Lipoxygenase-Activating Protein (FLAP) Inhibitors by Exploiting a Multistep Virtual Screening Protocol. Journal of Chemical Information and Modeling, 2020, 60, 1737-1748.	5.4	9
10	A Multiâ€step Virtual Screening Protocol for the Identification of Novel Nonâ€acidic Microsomal Prostaglandinâ€E ₂ Synthaseâ€1 (mPGESâ€1) Inhibitors. ChemMedChem, 2019, 14, 273-281.	3.2	15
11	Liquid chromatography-coupled mass spectrometry analysis of glutathione conjugates of oxygenated polyunsaturated fatty acids. Prostaglandins and Other Lipid Mediators, 2019, 144, 106350.	1.9	12
12	Impact of food polyphenols on oxylipin biosynthesis in human neutrophils. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1536-1544.	2.4	9
13	Targeting biosynthetic networks of the proinflammatory and proresolving lipid metabolome. FASEB Journal, 2019, 33, 6140-6153.	0.5	95
14	Melleolides from Honey Mushroom Inhibit 5-Lipoxygenase via Cys159. Cell Chemical Biology, 2019, 26, 60-70.e4.	5.2	13
15	Synthesis, Biological Evaluation and Structure–Activity Relationships of Diflapolin Analogues as Dual sEH/FLAP Inhibitors. ACS Medicinal Chemistry Letters, 2019, 10, 62-66.	2.8	8
16	A 5‑lipoxygenase-specific sequence motif impedes enzyme activity and confers dependence on a partner protein. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 543-551.	2.4	3
17	Identification of multi-target inhibitors of leukotriene and prostaglandin E2 biosynthesis by structural tuning of the FLAP inhibitor BRP-7. European Journal of Medicinal Chemistry, 2018, 150, 876-899.	5.5	19
18	Endogenous metabolites of vitamin E limit inflammation by targeting 5-lipoxygenase. Nature Communications, 2018, 9, 3834.	12.8	101

Ulrike Garscha

#	Article	IF	CITATIONS
19	Discovery of the first dual inhibitor of the 5-lipoxygenase-activating protein and soluble epoxide hydrolase using pharmacophore-based virtual screening. Scientific Reports, 2017, 7, 42751.	3.3	33
20	Evaluation of Dual 5-Lipoxygenase/Microsomal Prostaglandin E2 Synthase-1 Inhibitory Effect of Natural and Synthetic Acronychia-Type Isoprenylated Acetophenones. Journal of Natural Products, 2017, 80, 699-706.	3.0	10
21	Novel leukotriene biosynthesis inhibitors (2012-2016) as anti-inflammatory agents. Expert Opinion on Therapeutic Patents, 2017, 27, 607-620.	5.0	36
22	Pharmacological profile and efficiency in vivo of diflapolin, the first dual inhibitor of 5-lipoxygenase-activating protein and soluble epoxide hydrolase. Scientific Reports, 2017, 7, 9398.	3.3	36
23	The 5-lipoxygenase inhibitor RF-22c potently suppresses leukotriene biosynthesis in cellulo and blocks bronchoconstriction and inflammation in vivo. Biochemical Pharmacology, 2016, 112, 60-71.	4.4	25
24	BRP-187: A potent inhibitor of leukotriene biosynthesis that acts through impeding the dynamic 5-lipoxygenase/5-lipoxygenase-activating protein (FLAP) complex assembly. Biochemical Pharmacology, 2016, 119, 17-26.	4.4	36
25	Development of smart cell-free and cell-based assay systems for investigation of leukotriene C 4 synthase activity and evaluation of inhibitors. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1605-1613.	2.4	10
26	Synthesis and biological evaluation of C(5)-substituted derivatives of leukotriene biosynthesis inhibitor BRP-7. European Journal of Medicinal Chemistry, 2016, 122, 510-519.	5.5	9
27	Timeâ€resolved <i>in situ</i> assembly of the leukotrieneâ€synthetic 5â€lipoxygenase/5â€lipoxygenaseâ€activatii protein complex in blood leukocytes. FASEB Journal, 2016, 30, 276-285.	1g 0.5	51
28	4,5-Diarylisoxazol-3-carboxylic acids: A new class of leukotriene biosynthesis inhibitors potentially targeting 5-lipoxygenase-activating protein (FLAP). European Journal of Medicinal Chemistry, 2016, 113, 1-10.	5.5	45
29	Discovery of Potent Soluble Epoxide Hydrolase (sEH) Inhibitors by Pharmacophore-Based Virtual Screening. Journal of Chemical Information and Modeling, 2016, 56, 747-762.	5.4	38
30	5â€Lipoxygenaseâ€activating protein rescues activity of 5â€lipoxygenase mutations that delay nuclear membrane association and disrupt product formation. FASEB Journal, 2016, 30, 1892-1900.	0.5	33
31	Characterization of the interaction of human 5-lipoxygenase with its activating protein FLAP. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 1465-1472.	2.4	23
32	Design, synthesis and evaluation of semi-synthetic triazole-containing caffeic acid analogues as 5-lipoxygenase inhibitors. European Journal of Medicinal Chemistry, 2015, 101, 573-583.	5.5	30
33	Discovery of novel, non-acidic mPGES-1 inhibitors by virtual screening with a multistep protocol. Bioorganic and Medicinal Chemistry, 2015, 23, 4839-4845.	3.0	18
34	A procedure for efficient non-viral siRNA transfection of primary human monocytes using nucleofection. Journal of Immunological Methods, 2015, 422, 118-124.	1.4	11
35	Indirubin Core Structure of Glycogen Synthase Kinase-3 Inhibitors as Novel Chemotype for Intervention with 5-Lipoxygenase. Journal of Medicinal Chemistry, 2014, 57, 3715-3723.	6.4	37
36	An experimental cell-based model for studying the cell biology and molecular pharmacology of 5-lipoxygenase-activating protein in leukotriene biosynthesis. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2961-2969.	2.4	38

Ulrike Garscha

#	Article	IF	CITATIONS
37	Expression of 5,8-LDS of Aspergillus fumigatus and its dioxygenase domain. A comparison with 7,8-LDS, 10-dioxygenase, and cyclooxygenase. Archives of Biochemistry and Biophysics, 2011, 506, 216-222.	3.0	33
38	Manganese lipoxygenase oxidizes bis-allylic hydroperoxides and octadecenoic acids by different mechanisms. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 138-147.	2.4	33
39	Effects of PCB126 and 17Î2-oestradiol on endothelium-derived vasoactive factors in human endothelial cells. Toxicology, 2011, 285, 46-56.	4.2	34
40	Stereoselective oxidation of regioisomeric octadecenoic acids by fatty acid dioxygenases. Journal of Lipid Research, 2011, 52, 1995-2004.	4.2	27
41	Reaction mechanism of 5,8-linoleate diol synthase, 10R-dioxygenase, and 8,11-hydroperoxide isomerase of Aspergillus clavatus. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 503-507.	2.4	25
42	Leucine/Valine Residues Direct Oxygenation of Linoleic Acid by (10R)- and (8R)-Dioxygenases. Journal of Biological Chemistry, 2009, 284, 13755-13765.	3.4	35
43	A lipoxygenase with dual positional specificity is expressed in olives (Olea europaea L.) during ripening. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 339-346.	2.4	37
44	Enantiomeric separation and analysis of unsaturated hydroperoxy fatty acids by chiral column chromatography-mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 872, 90-98.	2.3	43
45	Critical amino acids for the 8(<i>R</i>)â€dioxygenase activity of linoleate diol synthase. A comparison with cyclooxygenases. FEBS Letters, 2008, 582, 3547-3551.	2.8	20
46	Pichia expression and mutagenesis of 7,8-linoleate diol synthase change the dioxygenase and hydroperoxide isomerase. Biochemical and Biophysical Research Communications, 2008, 373, 579-583.	2.1	10
47	Identification of Dioxygenases Required for Aspergillus Development. Journal of Biological Chemistry, 2007, 282, 34707-34718.	3.4	88
48	Steric analysis of 8-hydroxy- and 10-hydroxyoctadecadienoic acids and dihydroxyoctadecadienoic acids formed from 8R-hydroperoxyoctadecadienoic acid by hydroperoxide isomerases. Analytical Biochemistry, 2007, 367, 238-246.	2.4	41
49	Payne rearrangement during analysis of epoxyalcohols of linoleic and α-linolenic acids by normal phase liquid chromatography with tandem mass spectrometry. Analytical Biochemistry, 2006, 354, 111-126.	2.4	51