
Min Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4141318/publications.pdf Version: 2024-02-01

MIN WANC

#	Article	IF	CITATIONS
1	Technologies and perspectives for achieving carbon neutrality. Innovation(China), 2021, 2, 100180.	9.1	306
2	An integrated gene catalog and over 10,000 metagenome-assembled genomes from the gastrointestinal microbiome of ruminants. Microbiome, 2021, 9, 137.	11.1	110
3	Shifts in Rumen Fermentation and Microbiota Are Associated with Dissolved Ruminal Hydrogen Concentrations in Lactating Dairy Cows Fed Different Types of Carbohydrates. Journal of Nutrition, 2016, 146, 1714-1721.	2.9	60
4	Investigation and manipulation of metabolically active methanogen community composition during rumen development in black goats. Scientific Reports, 2017, 7, 422.	3.3	51
5	Nitrate improves ammonia incorporation into rumen microbial protein in lactating dairy cows fed a low-protein diet. Journal of Dairy Science, 2018, 101, 9789-9799.	3.4	39
6	<i>In vitro</i> evaluation on neutral detergent fiber and cellulose digestion by post-ruminal microorganisms in goats. Journal of the Science of Food and Agriculture, 2014, 94, 1745-1752.	3.5	32
7	Molecular hydrogen generated by elemental magnesium supplementation alters rumen fermentation and microbiota in goats. British Journal of Nutrition, 2017, 118, 401-410.	2.3	26
8	Liquid hot water treatment of rice straw enhances anaerobic degradation and inhibits methane production during in vitro ruminal fermentation. Journal of Dairy Science, 2020, 103, 4252-4261.	3.4	24
9	Short communication: Variability in fermentation end-products and methanogen communities in different rumen sites of dairy cows. Journal of Dairy Science, 2018, 101, 5153-5158.	3.4	23
10	Supersaturation of Dissolved Hydrogen and Methane in Rumen of Tibetan Sheep. Frontiers in Microbiology, 2016, 7, 850.	3.5	21
11	Combined effects of 3-nitrooxypropanol and canola oil supplementation on methane emissions, rumen fermentation and biohydrogenation, and total tract digestibility in beef cattle. Journal of Animal Science, 2021, 99, .	0.5	21
12	Urea plus nitrate pretreatment of rice and wheat straws enhances degradation and reduces methane production in <i>in vitro</i> ruminal culture. Journal of the Science of Food and Agriculture, 2018, 98, 5205-5211.	3.5	20
13	Effects of urea plus nitrate pretreated rice straw and corn oil supplementation on fiber digestibility, nitrogen balance, rumen fermentation, microbiota and methane emissions in goats. Journal of Animal Science and Biotechnology, 2019, 10, 6.	5.3	18
14	Corn oil supplementation enhances hydrogen use for biohydrogenation, inhibits methanogenesis, and alters fermentation pathways and the microbial community in the rumen of goats. Journal of Animal Science, 2019, 97, 4999-5008.	0.5	17
15	Effects of three methane mitigation agents on parameters of kinetics of total and hydrogen gas production, ruminal fermentation and hydrogen balance using <i>in vitro</i> technique. Animal Science Journal, 2016, 87, 224-232.	1.4	15
16	A mathematical model to describe the diurnal pattern of enteric methane emissions from non-lactating dairy cows post-feeding. Animal Nutrition, 2015, 1, 329-338.	5.1	14
17	Effects of rumen cannulation on dissolved gases and methanogen community in dairy cows. Journal of Dairy Science, 2019, 102, 2275-2282.	3.4	14
18	Effects of Chemical and Mechanical Lysis on Microbial DNA Yield, Integrity, and Downstream Amplicon Sequencing of Rumen Bacteria and Protozoa. Frontiers in Microbiology, 2020, 11, 581227.	3.5	14

Min Wang

#	Article	IF	CITATIONS
19	3-Nitrooxypropanol supplementation had little effect on fiber degradation and microbial colonization of forage particles when evaluated using the in situ ruminal incubation technique. Journal of Dairy Science, 2020, 103, 8986-8997.	3.4	13
20	Molecular hydrogen produced by elemental magnesium inhibits rumen fermentation and enhances methanogenesis in dairy cows. Journal of Dairy Science, 2019, 102, 5566-5576.	3.4	9
21	Biochanin A Inhibits Ruminal Nitrogen-Metabolizing Bacteria and Alleviates the Decomposition of Amino Acids and Urea In Vitro. Animals, 2020, 10, 368.	2.3	9
22	Application of 3-nitrooxypropanol and canola oil to mitigate enteric methane emissions of beef cattle results in distinctly different effects on the rumen microbial community. Animal Microbiome, 2022, 4, .	3.8	9
23	Proper motility enhances rumen fermentation and microbial protein synthesis with decreased saturation of dissolved gases in rumen simulation technique. Journal of Dairy Science, 2022, 105, 231-241.	3.4	8
24	The effect of forage theoretical cut lengths on chewing activity, rumen fermentation, dissolved gases, and methane emissions in goats. Animal Feed Science and Technology, 2020, 263, 114454.	2.2	6
25	Technical note: Evaluation of interval between measurements and calculation method for the quantification of enteric methane emissions measured by respiration chamber. Journal of Dairy Science, 2019, 102, 6242-6247.	3.4	5
26	Effects of elemental magnesium and magnesium oxide on hydrogen, methane and volatile fatty acids production in in vitro rumen batch cultures. Animal Feed Science and Technology, 2019, 252, 74-82.	2.2	5
27	Association of fibre degradation with ruminal dissolved hydrogen in growing beef bulls fed with two types of forages. British Journal of Nutrition, 2021, 125, 601-610.	2.3	4
28	Chemical composition and in vitro ruminal fermentation of pigeonpea and mulberry leaves. Agroforestry Systems, 2020, 94, 1521-1528.	2.0	3
29	In vitro Inoculation of Fresh or Frozen Rumen Fluid Distinguishes Contrasting Microbial Communities and Fermentation Induced by Increasing Forage to Concentrate Ratio. Frontiers in Nutrition, 2021, 8, 772645.	3.7	3
30	Comparisons of Corn Stover Silages after Fresh- or Ripe-Corn Harvested: Effects on Digestibility and Rumen Fermentation in Growing Beef Cattle. Animals, 2022, 12, 1248.	2.3	3
31	Associations of ruminal hydrogen and pH with fiber digestibility and microbiota composition induced by increasing starch intake in beef cattle. Animal Feed Science and Technology, 2021, 278, 114980.	2.2	1