Katherine B Holt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4140579/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Refining Energy Levels in ReS ₂ Nanosheets by Lowâ€Valent Transitionâ€Metal Doping for Dualâ€Boosted Electrochemical Ammonia/Hydrogen Production. Advanced Functional Materials, 2020, 30, 1907376.	14.9	99
2	Investigations into the mechanism of copper-mediated Glaser–Hay couplings using electrochemical techniques. Faraday Discussions, 2019, 220, 269-281.	3.2	7
3	Synthesis, Molecular Structures and Electrochemical Investigations of [FeFe]â€Hydrogenase Biomimics [Fe ₂ (CO) _{6â€<i>n</i>} (EPh ₃) <i>_n</i> (ŵâ€edt)] (E = P, As, S	Sb;)2 T @ETC	Qq117 0.7843
4	Models of the iron-only hydrogenase enzyme: structure, electrochemistry and catalytic activity of Fe ₂ (CO) ₃ (μ-dithiolate)(μ,β ¹ ,β ² -triphos). Dalton Transactions, 2019, 48, 6174-6190.	3.3	31
5	In Situ Determination of pH at Nanostructured Carbon Electrodes Using IR Spectroscopy. Materials, 2019, 12, 4044.	2.9	Ο
6	Electrochemical synthesis of copper(<scp>i</scp>) acetylides <i>via</i> simultaneous copper ion and catalytic base electrogeneration for use in click chemistry. RSC Advances, 2019, 9, 29300-29304.	3.6	8
7	Electrochemical Fouling of Dopamine and Recovery of Carbon Electrodes. Analytical Chemistry, 2018, 90, 1408-1416.	6.5	84
8	Electrochemical preparation and applications of copper(<scp>i</scp>) acetylides: a demonstration of how electrochemistry can be used to facilitate sustainability in homogeneous catalysis. Green Chemistry, 2018, 20, 5474-5478.	9.0	14
9	Insight into the Nature of Iron Sulfide Surfaces During the Electrochemical Hydrogen Evolution and CO ₂ Reduction Reactions. ACS Applied Materials & amp; Interfaces, 2018, 10, 32078-32085.	8.0	33
10	Acid deprotonation driven by cation migration at biased graphene nanoflake electrodes. Chemical Communications, 2017, 53, 2351-2354.	4.1	12
11	Electrocatalytic proton reduction by [Fe(CO) 2 (κ 2 -dppv)(κ 1 -SAr) 2] (dppv = cis) Tj ETQq1 1 0.784314 rgBT /	Overlock	10 Tf 50 342
12	Copper complexes with dissymmetrically substituted bis(thiosemicarbazone) ligands as a basis for PET radiopharmaceuticals: control of redox potential and lipophilicity. Dalton Transactions, 2017, 46, 14612-14630.	3.3	15
13	In situ spectroscopic monitoring of CO ₂ reduction at copper oxide electrode. Faraday Discussions, 2017, 197, 517-532.	3.2	37
14	Nanodiamonds on tetrahedral amorphous carbon significantly enhance dopamine detection and cell viability. Biosensors and Bioelectronics, 2017, 88, 273-282.	10.1	41
15	Biomimetics of the [FeFe]-hydrogenase enzyme: Identification of kinetically favoured apical-basal [Fe2(CO)4(μ-H){κ2-Ph2PC(Me2)PPh2}(μ-pdt)]+ as a proton-reduction catalyst. Journal of Organometallic Chemistry, 2016, 812, 247-258.	1.8	54
16	Hydrogenase biomimetics with redox-active ligands: Electrocatalytic proton reduction by [Fe2(CO)4(lº2-diamine)(l̂1⁄4-edt)] (diamine = 2,2′-bipy, 1,10-phen). Polyhedron, 2016, 116, 127-135.	2.2	36
17	Solvent–surface interactions between nanodiamond and ethanol studied with in situ infrared spectroscopy. Diamond and Related Materials, 2016, 61, 7-13.	3.9	31
18	The influence of acidic edge groups on the electrochemical performance of graphene nanoflakes. Journal of Electroanalytical Chemistry, 2015, 753, 28-34.	3.8	10

KATHERINE B HOLT

#	Article	IF	CITATIONS
19	Reduction of Carbon Dioxide to Formate at Low Overpotential Using a Superbase Ionic Liquid. Angewandte Chemie - International Edition, 2015, 54, 14164-14168.	13.8	134
20	Surface redox chemistry and mechanochemistry of insulating polystyrene nanospheres. Physical Chemistry Chemical Physics, 2015, 17, 1837-1846.	2.8	14
21	Electrocatalytic proton reduction catalysed by the low-valent tetrairon-oxo cluster [Fe ₄ (CO) ₁₀ (ΰ ² -dppn)(μ ₄ -O)] ^{2â^'} [dppn = 1,1′-bis(diphenylphosphino)naphthalene]. Dalton Transactions, 2015, 44, 5160-5169.	3.3	11
22	Bio-inspired CO ₂ conversion by iron sulfide catalysts under sustainable conditions. Chemical Communications, 2015, 51, 7501-7504.	4.1	188
23	Role of surface contaminants, functionalities, defects and electronic structure: general discussion. Faraday Discussions, 2014, 172, 365-395.	3.2	1
24	Hydrogenase biomimetics: Fe ₂ (CO) ₄ (μ-dppf)(μ-pdt) (dppf =) Tj ETQq0 0 0 rgBT /Ove Chemical Communications, 2014, 50, 945-947.	erlock 10 7 4.1	ff 50 547 Td 105
25	Electrochemical characterisation of graphene nanoflakes with functionalised edges. Faraday Discussions, 2014, 172, 293-310.	3.2	32
26	Nanodiamond surface redox chemistry: influence of physicochemical properties on catalytic processes. Faraday Discussions, 2014, 172, 349-364.	3.2	37
27	Bioinspired Hydrogenase Models: The Mixed-Valence Triiron Complex [Fe ₃ (CO) ₇ (μ-edt) ₂] and Phosphine Derivatives [Fe ₃ (CO) _{7â€"<i>x</i>} (PPh ₃) _{<i>x</i>} (μ-edt) ₂] (<i>x</i> = 1, 2) and [Fe ₃ (CO) ₅ (°2]	2.3	22
28	Models of the iron-only hydrogenase: a comparison of chelate and bridge isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-pdt) as proton-reduction catalysts. Dalton Transactions, 2013, 42, 6775.	3.3	111
29	Fluorinated models of the iron-only hydrogenase: An electrochemical study of the influence of an electron-withdrawing bridge on the proton reduction overpotential and catalyst stability. Journal of Electroanalytical Chemistry, 2013, 703, 14-22.	3.8	23
30	Multimetallic Complexes and Functionalized Nanoparticles Based on Oxygen- and Nitrogen-Donor Combinations. Inorganic Chemistry, 2013, 52, 4700-4713.	4.0	18
31	Redox transformations at nanodiamond surfaces revealed by in situ infrared spectroscopy. Chemical Communications, 2011, 47, 12140.	4.1	22
32	Bio-inspired hydrogenase models: mixed-valence triion complexes as proton reduction catalysts. Chemical Communications, 2011, 47, 11222.	4.1	23
33	Free radical facilitated damage of ungual keratin. Free Radical Biology and Medicine, 2010, 49, 865-871.	2.9	8
34	Astroelectrochemistry: the role of redox reactions in cosmic dust chemistry. Physical Chemistry Chemical Physics, 2010, 12, 3072.	2.8	12
35	Undoped diamond nanoparticles: origins of surface redox chemistry. Physical Chemistry Chemical Physics, 2010, 12, 2048.	2.8	53
36	Soap film electrochemistry. Electrochemistry Communications, 2009, 11, 1226-1229.	4.7	10

KATHERINE B HOLT

#	Article	IF	CITATIONS
37	Scanning Electrochemical Microscopy Studies of Redox Processes at Undoped Nanodiamond Surfaces. Journal of Physical Chemistry C, 2009, 113, 2761-2770.	3.1	32
38	Focused Ion Beam Fabrication of Boron-Doped Diamond Ultramicroelectrodes. Analytical Chemistry, 2009, 81, 5663-5670.	6.5	35
39	Electrochemistry of Undoped Diamond Nanoparticles: Accessing Surface Redox States. Journal of the American Chemical Society, 2009, 131, 11272-11273.	13.7	54
40	Bimetallic complexes based on carboxylate and xanthate ligands: Synthesis and electrochemical investigations. Dalton Transactions, 2009, , 7891.	3.3	24
41	Multimetallic Assemblies Using Piperazine-Based Dithiocarbamate Building Blocks. Inorganic Chemistry, 2008, 47, 9642-9653.	4.0	101
42	Redox properties of undoped 5 nm diamond nanoparticles. Physical Chemistry Chemical Physics, 2008, 10, 303-310.	2.8	80
43	Hot filament chemical vapour deposition of diamond ultramicroelectrodes. Physical Chemistry Chemical Physics, 2007, 9, 5469.	2.8	14
44	Clarke oxygen microelectrode. , 2007, , 243-249.		1
45	Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 2845-2861.	3.4	174
46	Fabrication of Boron-Doped Diamond Ultramicroelectrodes for Use in Scanning Electrochemical Microscopy Experiments. Analytical Chemistry, 2007, 79, 2556-2561.	6.5	40
47	Diamond ultramicroelectrodes. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 2940-2944.	1.8	5
48	Using Scanning Electrochemical Microscopy (SECM) to Measure the Electron-Transfer Kinetics of Cytochrome c Immobilized on a COOH-Terminated Alkanethiol Monolayer on a Gold Electrode. Langmuir, 2006, 22, 4298-4304.	3.5	34
49	Fabrication and Characterisation of Diamond Ultramicroelectrodes of Diameter < 25 Microns for use in Electroanalysis, Sensing and Imaging Applications. ECS Transactions, 2006, 3, 37-45.	0.5	3
50	Interaction of Silver(I) Ions with the Respiratory Chain of Escherichia coli:  An Electrochemical and Scanning Electrochemical Microscopy Study of the Antimicrobial Mechanism of Micromolar Ag+. Biochemistry, 2005, 44, 13214-13223.	2.5	688
51	Scanning Electrochemical Microscopy and Conductive Probe Atomic Force Microscopy Studies of Hydrogen-Terminated Boron-Doped Diamond Electrodes with Different Doping Levels. Journal of Physical Chemistry B, 2004, 108, 15117-15127.	2.6	180
52	Anodic activity of boron-doped diamond electrodes in bleaching processes: effects of ultrasound and surface states. New Journal of Chemistry, 2003, 27, 698-703.	2.8	23
53	Scanning Electrochemical Microscopy. 49. Gas-Phase Scanning Electrochemical Microscopy Measurements with a Clark Oxygen Ultramicroelectrode. Analytical Chemistry, 2003, 75, 5071-5079. 	6.5	34
54	Abrasive stripping voltammetry of silver and tin at boron-doped diamond electrodes. Diamond and Related Materials, 2002, 11, 646-650.	3.9	27

KATHERINE B HOLT

#	Article	IF	CITATIONS
55	Reactions of xenon difluoride and atomic hydrogen at chemical vapour deposited diamond surfaces. Surface Science, 2001, 488, 335-345.	1.9	14
56	Mechanistic aspects of the sonoelectrochemical degradation of the reactive dye Procion Blue at boron-doped diamond electrodes. Diamond and Related Materials, 2001, 10, 662-666.	3.9	33
57	Microwave activation of electrochemical processes: enhanced PbO2 electrodeposition, stripping and electrocatalysis. Journal of Solid State Electrochemistry, 2001, 5, 313-318.	2.5	24
58	Microwave-Enhanced Anodic Stripping Detection of Lead in a River Sediment Sample. A Mercury-Free Procedure Employing a Boron-Doped Diamond Electrode. Electroanalysis, 2001, 13, 831-835.	2.9	60
59	Sonoelectrochemistry at platinum and boron-doped diamond electrodes: achieving â€~fast mass transport' for â€~slow diffusers'. Journal of Electroanalytical Chemistry, 2001, 513, 94-99.	3.8	30
60	Lead Dioxide Deposition and Electrocatalysis at Highly Boron-Doped Diamond Electrodes in the Presence of Ultrasound. Journal of the Electrochemical Society, 2001, 148, E66.	2.9	36