
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4140531/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Antimicrobial Active Packaging Prepared by Reactive Extrusion of Îμ-Poly <scp>l</scp> -lysine with Polypropylene. ACS Food Science & Technology, 2022, 2, 391-399.	1.3	6
2	Interfacial behavior of a polylactic acid active packaging film dictates its performance in complex food matrices. Food Packaging and Shelf Life, 2022, 32, 100832.	3.3	5
3	Antioxidant and dissociation behavior of polypropyleneâ€ <i>graft</i> â€maleic anhydride. Journal of Applied Polymer Science, 2022, 139, .	1.3	3
4	Biodegradation of microplastics in food and agriculture. Current Opinion in Food Science, 2021, 37, 37-44.	4.1	74
5	Engaged food science: Connecting Kâ€8 learners to food science while engaging graduate students in science communication. Journal of Food Science Education, 2021, 20, 31-47.	1.0	1
6	Antioxidant functionalization of biomaterials via reactive extrusion. Journal of Applied Polymer Science, 2021, 138, 50591.	1.3	4
7	Bacteriophage Capsid Modification by Genetic and Chemical Methods. Bioconjugate Chemistry, 2021, 32, 466-481.	1.8	24
8	Immobilization of Fungal β-Galactosidase through Self-Assembly of Hierarchical Microflowers under Optimal Activity Conditions. ACS Food Science & Technology, 2021, 1, 304-309.	1.3	2
9	Recombinant lactase with a cellulose binding domain permits facile immobilization onto cellulose with retained activity. Food and Bioproducts Processing, 2021, 126, 207-214.	1.8	7
10	Concentrated sugar solutions protect lactase from thermal inactivation. International Dairy Journal, 2021, 123, 105168.	1.5	2
11	Radical scavenging polyethylene films as antioxidant active packaging materials. Food Control, 2020, 109, 106946.	2.8	45
12	General method for emulsion polymerization to yield functional terpolymers. MethodsX, 2020, 7, 101110.	0.7	3
13	Engineering Biorthogonal Phage-Based Nanobots for Ultrasensitive, <i>In Situ</i> Bacteria Detection. ACS Applied Bio Materials, 2020, 3, 5824-5831.	2.3	22
14	Reactive Extrusion of Nonmigratory Antioxidant Poly(lactic acid) Packaging. Journal of Agricultural and Food Chemistry, 2020, 68, 2164-2173.	2.4	13
15	Antimicrobial and antifouling polymeric coating mitigates persistence of <i>Pseudomonas aeruginosa</i> biofilm. Biofouling, 2019, 35, 785-795.	0.8	17
16	The Role of Solid Support Bound Metal Chelators on Systemâ€Dependent Synergy and Antagonism with Nisin. Journal of Food Science, 2019, 84, 580-589.	1.5	1
17	Performance of photo-curable metal-chelating active packaging coating in complex food matrices. Food Chemistry, 2019, 286, 154-159.	4.2	7
18	Photoâ€Curable Metalâ€Chelating Coatings Offer a Scalable Approach to Production of Antioxidant Active Packaging. Journal of Food Science, 2018, 83, 367-376.	1.5	27

#	Article	IF	CITATIONS
19	Correction to Fourier Transform Infrared Studies on the Dissociation Behavior of Metal-Chelating Polyelectrolyte Brushes. ACS Applied Materials & Interfaces, 2018, 10, 4341-4341.	4.0	0
20	Stabilization of Lipase in Polymerized High Internal Phase Emulsions. Journal of Agricultural and Food Chemistry, 2018, 66, 3619-3623.	2.4	11
21	Facile Preparation of Epoxide-Functionalized Surfaces via Photocurable Copolymer Coatings and Subsequent Immobilization of Iminodiacetic Acids. ACS Applied Materials & Interfaces, 2018, 10, 40871-40879.	4.0	18
22	Transforming food waste: how immobilized enzymes can valorize waste streams into revenue streams. Npj Science of Food, 2018, 2, 19.	2.5	74
23	Antimicrobial polymer coatings with efficacy against pathogenic and spoilage microorganisms. LWT - Food Science and Technology, 2018, 97, 546-554.	2.5	30
24	Photocurable coatings prepared by emulsion polymerization present chelating properties. Colloids and Surfaces B: Biointerfaces, 2018, 172, 143-151.	2.5	21
25	Synthesis and characterization of lactose fatty acid ester biosurfactants using free and immobilized lipases in organic solvents. Food Chemistry, 2018, 266, 508-513.	4.2	44
26	Correction to Synthesis of Iminodiacetate Functionalized Polypropylene Films and Their Efficacy as Antioxidant Active-Packaging Materials. Journal of Agricultural and Food Chemistry, 2017, 65, 1086-1086.	2.4	0
27	Influence of Hierarchical Interfacial Assembly on Lipase Stability and Performance in Deep Eutectic Solvent. Journal of Agricultural and Food Chemistry, 2017, 65, 1907-1914.	2.4	15
28	Oxygen scavenging polymer coating prepared by hydrophobic modification of glucose oxidase. Journal of Coatings Technology Research, 2017, 14, 489-495.	1.2	9
29	Immobilization of chymotrypsin on hierarchical nylon 6,6 nanofiber improves enzyme performance. Colloids and Surfaces B: Biointerfaces, 2017, 154, 270-278.	2.5	36
30	ls oxygen reduction a viable antioxidant strategy for oil-in-water emulsions?. European Journal of Lipid Science and Technology, 2017, 119, 1600285.	1.0	8
31	Integrating recognition elements with nanomaterials for bacteria sensing. Chemical Society Reviews, 2017, 46, 1272-1283.	18.7	282
32	Hurdles to commercial translation of next generation active food packaging technologies. Current Opinion in Food Science, 2017, 16, 40-48.	4.1	56
33	Adhesion and removal kinetics of <i>Bacillus cereus</i> biofilms on Ni-PTFE modified stainless steel. Biofouling, 2016, 32, 523-533.	0.8	21
34	Self-healing antimicrobial polymer coating with efficacy in the presence of organic matter. Applied Surface Science, 2016, 378, 479-488.	3.1	46
35	Evaluation of modified stainless steel surfaces targeted to reduce biofilm formation by common milk sporeformers. Journal of Dairy Science, 2016, 99, 9502-9513.	1.4	56
36	Biomimetic polyphenol coatings for antioxidant active packaging applications. Colloids and Interface Science Communications, 2016, 13, 10-13.	2.0	25

#	Article	IF	CITATIONS
37	Synthesis of Iminodiacetate Functionalized Polypropylene Films and Their Efficacy as Antioxidant Active-Packaging Materials. Journal of Agricultural and Food Chemistry, 2016, 64, 4606-4617.	2.4	34
38	Hybrid Antifouling and Antimicrobial Coatings Prepared by Electroless Co-Deposition of Fluoropolymer and Cationic Silica Nanoparticles on Stainless Steel: Efficacy against <i>Listeria monocytogenes</i> . ACS Applied Materials & Interfaces, 2016, 8, 15926-15936.	4.0	20
39	Retaining Oxidative Stability of Emulsified Foods by Novel Nonmigratory Polyphenol Coated Active Packaging. Journal of Agricultural and Food Chemistry, 2016, 64, 5574-5582.	2.4	19
40	Iron chelating active packaging: Influence of competing ions and pH value on effectiveness of soluble and immobilized hydroxamate chelators. Food Chemistry, 2016, 196, 842-847.	4.2	15
41	Preparation of Biocatalytic Microparticles by Interfacial Self-Assembly of Enzyme–Nanoparticle Conjugates Around a Cross-Linkable Core. Methods in Enzymology, 2016, 571, 1-17.	0.4	4
42	Preparation of metal chelating active packaging materials by laminated photografting. Journal of Coatings Technology Research, 2016, 13, 395-404.	1.2	16
43	Performance of Nonmigratory Iron Chelating Active Packaging Materials in Viscous Model Food Systems. Journal of Food Science, 2015, 80, E1965-73.	1.5	12
44	Active Packaging Coatings. Coatings, 2015, 5, 771-791.	1.2	111
45	Development of Iron-Chelating Poly(ethylene terephthalate) Packaging for Inhibiting Lipid Oxidation in Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2015, 63, 5055-5060.	2.4	21
46	Antimicrobial efficacy of N -halamine coatings prepared via dip and spray layer-by-layer deposition. Food and Bioproducts Processing, 2015, 96, 12-19.	1.8	30
47	Stability of nonfouling electroless nickel-polytetrafluoroethylene coatings after exposure to commercial dairy equipment sanitizers. Journal of Dairy Science, 2015, 98, 5983-5994.	1.4	13
48	Antimicrobial Coatings with Dual Cationic and <i>N</i> -Halamine Character: Characterization and Biocidal Efficacy. Journal of Agricultural and Food Chemistry, 2015, 63, 4243-4251.	2.4	59
49	Influence of fluid milk product composition on fouling and cleaning of Ni–PTFE modified stainless steel heat exchanger surfaces. Journal of Food Engineering, 2015, 158, 22-29.	2.7	36
50	Biomimetic design of chelating interfaces. Journal of Applied Polymer Science, 2015, 132, .	1.3	29
51	Antimicrobial Food Equipment Coatings: Applications and Challenges. Annual Review of Food Science and Technology, 2015, 6, 97-118.	5.1	73
52	Metal-Chelating Active Packaging Film Enhances Lysozyme Inhibition of Listeria monocytogenes. Journal of Food Protection, 2014, 77, 1153-1160.	0.8	12
53	Stability of nonfouling stainless steel heat exchanger plates against commercial cleaning agents. Journal of Food Engineering, 2014, 124, 143-151.	2.7	19
54	Short communication: Effect of active food packaging materials on fluid milk quality and shelf life. Journal of Dairy Science, 2014, 97, 166-172.	1.4	6

#	Article	IF	CITATIONS
55	Influence of non-migratory metal-chelating active packaging film on food quality: Impact on physical and chemical stability of emulsions. Food Chemistry, 2014, 151, 257-265.	4.2	22
56	Antimicrobial Nâ€halamine Modified Polyethylene: Characterization, Biocidal Efficacy, Regeneration, and Stability. Journal of Food Science, 2014, 79, E887-97.	1.5	27
57	Iron chelating polypropylene films: Manipulating photoinitiated graft polymerization to tailor chelating activity. Journal of Applied Polymer Science, 2014, 131, .	1.3	19
58	Immobilization and Stabilization of Lipase (CaLB) through Hierarchical Interfacial Assembly. Biomacromolecules, 2014, 15, 3915-3922.	2.6	41
59	Biocatalytic polymer nanofibers for stabilization and delivery of enzymes. Journal of Molecular Catalysis B: Enzymatic, 2014, 110, 16-22.	1.8	25
60	Fourier Transform Infrared Studies on the Dissociation Behavior of Metal-Chelating Polyelectrolyte Brushes. ACS Applied Materials & Interfaces, 2014, 6, 5383-5387.	4.0	26
61	Modification of glucose oxidase for the development of biocatalytic solvent inks. Enzyme and Microbial Technology, 2014, 55, 21-25.	1.6	12
62	Effect of polyethylene glycol tether size and chemistry on the attachment of lactase to polyethylene films. Journal of Applied Polymer Science, 2013, 127, 1203-1210.	1.3	19
63	Development of antimicrobial stainless steel via surface modification with Nâ€halamines: Characterization of surface chemistry and Nâ€halamine chlorination. Journal of Applied Polymer Science, 2013, 127, 821-831.	1.3	51
64	Inactivation of Listeria monocytogenes on a polyethylene surface modified by layer-by-layer deposition of the antimicrobial N-halamine. Journal of Food Engineering, 2013, 117, 52-58.	2.7	25
65	Anti-fouling surface modified stainless steel for food processing. Food and Bioproducts Processing, 2013, 91, 352-361.	1.8	107
66	Influence of nanoparticle diameter on conjugated enzyme activity. Food and Bioproducts Processing, 2013, 91, 693-699.	1.8	22
67	Controlling lipid oxidation of food by active packaging technologies. Food and Function, 2013, 4, 669.	2.1	135
68	Characterization of lactase-conjugated magnetic nanoparticles. Process Biochemistry, 2013, 48, 656-662.	1.8	31
69	Controlling Lipid Oxidation via a Biomimetic Iron Chelating Active Packaging Material. Journal of Agricultural and Food Chemistry, 2013, 61, 12397-12404.	2.4	41
70	Layer by Layer Assembly of a Biocatalytic Packaging Film: Lactase covalently Bound to Lowâ€Đensity Polyethylene. Journal of Food Science, 2013, 78, E853-60.	1.5	27
71	Innovative technologies in the control of lipid oxidation. Lipid Technology, 2012, 24, 275-277.	0.3	25
72	Development of an Iron Chelating Polyethylene Film for Active Packaging Applications. Journal of Agricultural and Food Chemistry, 2012, 60, 2046-2052.	2.4	40

#	Article	IF	CITATIONS
73	Control of Lipid Oxidation by Nonmigratory Active Packaging Films Prepared by Photoinitiated Graft Polymerization. Journal of Agricultural and Food Chemistry, 2012, 60, 7710-7718.	2.4	33
74	Nanomanufacturing of biomaterials. Materials Today, 2012, 15, 478-485.	8.3	51
75	Advances in Nonfouling Materials: Perspectives for the Food Industry. Journal of Agricultural and Food Chemistry, 2012, 60, 2943-2957.	2.4	101
76	Enzymes on material surfaces. Colloids and Surfaces B: Biointerfaces, 2012, 93, 8-19.	2.5	282
77	Topographical and chemical characterization of polymer surfaces modified by physical and chemical processes. Journal of Applied Polymer Science, 2011, 120, 2863-2871.	1.3	40
78	Porous Polymer Waveguides and Ring Resonators. , 2011, , .		0
79	Biopatterning for label-free detection. Colloids and Surfaces B: Biointerfaces, 2010, 76, 375-380.	2.5	12
80	Bioconjugation techniques for microfluidic biosensors. Analytical and Bioanalytical Chemistry, 2009, 394, 469-479.	1.9	55
81	Plasma modification of polyolefin surfaces. Packaging Technology and Science, 2009, 22, 139-150.	1.3	30
82	Optically Resonant Nanophotonic Devices for Label-Free Biomolecular Detection. Integrated Analytical Systems, 2009, , 445-470.	0.4	3
83	Highly Multiplexed Antibody-Antigen Detection using Nanoscale Optofluidic Resonators. , 2009, , .		Ο
84	Nanoscale Optofluidic Sensor Arrays for Dengue virus detection. , 2008, , .		0
85	Nanoscale optofluidic sensor arrays for Dengue virus detection. , 2008, , .		1