Pau Rodenas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4140331/publications.pdf

Version: 2024-02-01

1040056 1281871 558 14 9 11 citations h-index g-index papers 14 14 14 1141 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Microbial desalination cell design & amp; bioengineering assays: Main concepts., 2021,, 15-40.		О
2	Key elements and materials in microbial desalination cells. , 2021, , 41-92.		O
3	Algae-Assisted Microbial Desalination Cell: Analysis of Cathode Performance and Desalination Efficiency Assessment. Processes, 2021, 9, 2011.	2.8	11
4	Metals recovery from wastewater by microbial electrochemical technologies. , 2020, , 281-307.		0
5	Supporting Operational Decisions on Desalination Plants from Process Modelling and Simulation to Monitoring and Automated Control with Machine Learning. Lecture Notes in Business Information Processing, 2020, , 150-164.	1.0	2
6	Comparative Performance of Microbial Desalination Cells Using Air Diffusion and Liquid Cathode Reactions: Study of the Salt Removal and Desalination Efficiency. Frontiers in Energy Research, 2019, 7,	2.3	42
7	Prototype of a scaledâ€up microbial fuel cell for copper recovery. Journal of Chemical Technology and Biotechnology, 2017, 92, 2817-2824.	3.2	20
8	Gas diffusion electrodes improve hydrogen gas mass transfer for a hydrogen oxidizing bioanode. Journal of Chemical Technology and Biotechnology, 2017, 92, 2963-2968.	3.2	9
9	Hydrogen as electron donor for copper removal in bioelectrochemical systems. International Journal of Hydrogen Energy, 2016, 41, 5758-5764.	7.1	35
10	High rate copper and energy recovery in microbial fuel cells. Frontiers in Microbiology, 2015, 6, 527.	3.5	55
11	Harnessing Infrared Photons for Photoelectrochemical Hydrogen Generation. A PbS Quantum Dot Based "Quasi-Artificial Leaf― Journal of Physical Chemistry Letters, 2013, 4, 141-146.	4.6	101
12	Water Oxidation at Hematite Photoelectrodes with an Iridium-Based Catalyst. Journal of Physical Chemistry C, 2013, 117, 3826-3833.	3.1	128
13	Quantum Dot Based Heterostructures for Unassisted Photoelectrochemical Hydrogen Generation. Advanced Energy Materials, 2013, 3, 176-182.	19.5	101
14	Carrier density and interfacial kinetics of mesoporous TiO2 in aqueous electrolyte determined by impedance spectroscopy. Journal of Electroanalytical Chemistry, 2012, 668, 119-125.	3.8	54