List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4140108/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Characterization of the nickel-inserting cyclometallase LarC from <i>Moorella thermoacetica</i> and identification of a cytidinylylated reaction intermediate. Metallomics, 2022, 14, .	2.4	9
2	Structural and mutational characterization of a malate racemase from the LarA superfamily. BioMetals, 2022, , 1.	4.1	3
3	Biosynthesis and Function of the Nickelâ \in Pincer Nucleotide Cofactor. FASEB Journal, 2022, 36, .	0.5	0
4	Characterization of the Nickelâ€inserting Cyclometallase LarC from <i>Moorella thermoacetica</i> and Identification of a CMPylated Reaction Intermediate. FASEB Journal, 2022, 36, .	0.5	0
5	Characterization of a [4Fe-4S]-dependent LarE sulfur insertase that facilitates nickel-pincer nucleotide cofactor biosynthesis in Thermotoga maritima. Journal of Biological Chemistry, 2022, 298, 102131.	3.4	10
6	1H-HYSCORE Reveals Structural Details at the Fe(II) Active Site of Taurine:2-Oxoglutarate Dioxygenase. Applied Magnetic Resonance, 2021, 52, 971-994.	1.2	5
7	The LarB carboxylase/hydrolase forms a transient cysteinyl-pyridine intermediate during nickel-pincer nucleotide cofactor biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
8	Iron-containing ureases. Coordination Chemistry Reviews, 2021, 448, 214190.	18.8	4
9	Atomic and Electronic Structure Determinants Distinguish between Ethylene Formation and <scp>l</scp> -Arginine Hydroxylation Reaction Mechanisms in the Ethylene-Forming Enzyme. ACS Catalysis, 2021, 11, 1578-1592.	11.2	30
10	Uncovering a superfamily of nickel-dependent hydroxyacid racemases and epimerases. Scientific Reports, 2020, 10, 18123.	3.3	14
11	Crystallographic characterization of a tri-Asp metal-binding site at the three-fold symmetry axis of LarE. Scientific Reports, 2020, 10, 5830.	3.3	2
12	Biological Pincer Complexes. ChemCatChem, 2020, 12, 4242-4254.	3.7	18
13	Lanthanide-dependent alcohol dehydrogenases require an essential aspartate residue for metal coordination and enzymatic function. Journal of Biological Chemistry, 2020, 295, 8272-8284.	3.4	30
14	Nickel-Pincer Nucleotide Cofactor-Containing Enzymes. , 2020, , 111-130.		0
15	Glutarate L-2-hydroxylase (CsiD/GlaH) is an archetype Fe(II)/2-oxoglutarate-dependent dioxygenase. Advances in Protein Chemistry and Structural Biology, 2019, 117, 63-90.	2.3	3
16	Strongly Coupled Redox-Linked Conformational Switching at the Active Site of the Non-Heme Iron-Dependent Dioxygenase, TauD. Journal of Physical Chemistry B, 2019, 123, 7785-7793.	2.6	6
17	Structural Origin of the Large Redox-Linked Reorganization in the 2-Oxoglutarate Dependent Oxygenase, TauD. Journal of the American Chemical Society, 2019, 141, 15318-15326.	13.7	8
18	New metal cofactors and recent metallocofactor insights. Current Opinion in Structural Biology, 2019, 59, 1-8.	5.7	19

#	Article	IF	CITATIONS
19	Lactate Racemase Nickel-Pincer Cofactor Operates by a Proton-Coupled Hydride Transfer Mechanism. Biochemistry, 2018, 57, 3244-3251.	2.5	30
20	Amazing Diversity in Biochemical Roles of Fe(II)/2-Oxoglutarate Oxygenases. Trends in Biochemical Sciences, 2018, 43, 517-532.	7.5	147
21	A Structural Model of the Urease Activation Complex Derived from Ion Mobility-Mass Spectrometry and Integrative Modeling. Structure, 2018, 26, 599-606.e3.	3.3	25
22	Characterization of human AlkB homolog 1 produced in mammalian cells and demonstration of mitochondrial dysfunction in ALKBH1-deficient cells. Biochemical and Biophysical Research Communications, 2018, 495, 98-103.	2.1	17
23	A structural perspective on the PP-loop ATP pyrophosphatase family. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53, 607-622.	5.2	14
24	Thermodynamics of Iron(II) and Substrate Binding to the Ethylene-Forming Enzyme. Biochemistry, 2018, 57, 5696-5705.	2.5	17
25	Analysis of the Active Site Cysteine Residue of the Sacrificial Sulfur Insertase LarE from <i>Lactobacillus plantarum</i> . Biochemistry, 2018, 57, 5513-5523.	2.5	16
26	Nickel–pincer nucleotide cofactor. Current Opinion in Chemical Biology, 2018, 47, 18-23.	6.1	14
27	Biosynthesis of the nickel-pincer nucleotide cofactor of lactate racemase requires a CTP-dependent cyclometallase. Journal of Biological Chemistry, 2018, 293, 12303-12317.	3.4	31
28	The Irving–Williams series and the 2-His-1-carboxylate facial triad: a thermodynamic study of Mn2+, Fe2+, and Co2+ binding to taurine/α-ketoglutarate dioxygenase (TauD). Journal of Biological Inorganic Chemistry, 2018, 23, 785-793.	2.6	3
29	Increased heterocyst frequency by patN disruption in Anabaena leads to enhanced photobiological hydrogen production at high light intensity and high cell density. Applied Microbiology and Biotechnology, 2017, 101, 2177-2188.	3.6	24
30	Global stability of an α-ketoglutarate-dependent dioxygenase (TauD) and its related complexes. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 987-994.	2.4	7
31	Biochemical Characterization of AP Lyase and m ⁶ A Demethylase Activities of Human AlkB Homologue 1 (ALKBH1). Biochemistry, 2017, 56, 1899-1910.	2.5	23
32	Non-thiolate ligation of nickel by nucleotide-free UreG of Klebsiella aerogenes. Journal of Biological Inorganic Chemistry, 2017, 22, 497-503.	2.6	3
33	Structural insights into the catalytic mechanism of a sacrificial sulfur insertase of the N-type ATP pyrophosphatase family, LarE. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9074-9079.	7.1	33
34	Structures and Mechanisms of the Non-Heme Fe(II)- and 2-Oxoglutarate-Dependent Ethylene-Forming Enzyme: Substrate Binding Creates a Twist. Journal of the American Chemical Society, 2017, 139, 11980-11988.	13.7	55
35	Unexpected complexity in the lactate racemization system of lactic acid bacteria. FEMS Microbiology Reviews, 2017, 41, S71-S83.	8.6	21
36	Spectroscopic analyses of 2-oxoglutarate-dependent oxygenases: TauD as a case study. Journal of Biological Inorganic Chemistry, 2017, 22, 367-379.	2.6	25

#	Article	IF	CITATIONS
37	ALKBH7 Variant Related to Prostate Cancer Exhibits Altered Substrate Binding. PLoS Computational Biology, 2017, 13, e1005345.	3.2	24
38	Nickel-pincer cofactor biosynthesis involves LarB-catalyzed pyridinium carboxylation and LarE-dependent sacrificial sulfur insertion. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5598-5603.	7.1	48
39	Biochemical and Spectroscopic Characterization of the Non-Heme Fe(II)- and 2-Oxoglutarate-Dependent Ethylene-Forming Enzyme from <i>Pseudomonas syringae</i> pv. <i>phaseolicola</i> PK2. Biochemistry, 2016, 55, 5989-5999.	2.5	43
40	Mutational and Computational Evidence That a Nickel-Transfer Tunnel in UreD Is Used for Activation of <i>Klebsiella aerogenes</i> Urease. Biochemistry, 2015, 54, 6392-6401.	2.5	41
41	Calorimetric Assessment of Fe2+ Binding to α-Ketoglutarate/Taurine Dioxygenase: Ironing Out the Energetics of Metal Coordination by the 2-His-1-Carboxylate Facial Triad. Inorganic Chemistry, 2015, 54, 2278-2283.	4.0	12
42	Reduction of Urease Activity by Interaction with the Flap Covering the Active Site. Journal of Chemical Information and Modeling, 2015, 55, 354-361.	5.4	27
43	A tethered niacin-derived pincer complex with a nickel-carbon bond in lactate racemase. Science, 2015, 349, 66-69.	12.6	92
44	Biochemical Diversity of 2-Oxoglutarate-Dependent Oxygenases. 2-Oxoglutarate-Dependent Oxygenases, 2015, , 1-58.	0.8	31
45	Catalytic Mechanisms of Fe(II)- and 2-Oxoglutarate-dependent Oxygenases. Journal of Biological Chemistry, 2015, 290, 20702-20711.	3.4	327
46	AlkB and Its Homologues – DNA Repair and Beyond. 2-Oxoglutarate-Dependent Oxygenases, 2015, , 246-262.	0.8	4
47	Nickel-dependent metalloenzymes. Archives of Biochemistry and Biophysics, 2014, 544, 142-152.	3.0	269
48	Homology modeling, molecular dynamics, and site-directed mutagenesis study of AlkB human homolog 1 (ALKBH1). Journal of Molecular Graphics and Modelling, 2014, 54, 123-130.	2.4	9
49	Mechanism of the 6-Hydroxy-3-succinoyl-pyridine 3-Monooxygenase Flavoprotein from Pseudomonas putida S16. Journal of Biological Chemistry, 2014, 289, 29158-29170.	3.4	27
50	Sustained photobiological hydrogen production in the presence of N2 by nitrogenase mutants of the heterocyst-forming cyanobacterium Anabaena. International Journal of Hydrogen Energy, 2014, 39, 19444-19451.	7.1	19
51	Analysis of a Soluble (UreD:UreF:UreG)2 Accessory Protein Complex and Its Interactions with Klebsiella aerogenes Urease by Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2013, 24, 1328-1337.	2.8	13
52	Measuring the Orientation of Taurine in the Active Site of the Non-Heme Fe(II)/α-Ketoglutarate-Dependent Taurine Hydroxylase (TauD) Using Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy. Journal of Physical Chemistry B, 2013, 117, 10384-10394.	2.6	19
53	A covalent protein–DNA 5â€2-product adduct is generated following AP lyase activity of human ALKBH1 (AlkB homologue 1). Biochemical Journal, 2013, 452, 509-518.	3.7	23
54	Biosynthesis of the Urease Metallocenter. Journal of Biological Chemistry, 2013, 288, 13178-13185.	3.4	108

#	Article	IF	CITATIONS
55	ALKBH1 Is Dispensable for Abasic Site Cleavage during Base Excision Repair and Class Switch Recombination. PLoS ONE, 2013, 8, e67403.	2.5	15
56	<i>Klebsiella aerogenes</i> UreF: Identification of the UreG Binding Site and Role in Enhancing the Fidelity of Urease Activation. Biochemistry, 2012, 51, 2298-2308.	2.5	29
57	Apoprotein isolation and activation, and vibrational structure of the Helicobacter mustelae iron urease. Journal of Inorganic Biochemistry, 2012, 111, 195-202.	3.5	9
58	Genetic Engineering of Cyanobacteria to Enhance Biohydrogen Production from Sunlight and Water. Ambio, 2012, 41, 169-173.	5.5	33
59	Characterization of a Trypanosoma brucei Alkb homolog capable of repairing alkylated DNA. Experimental Parasitology, 2012, 131, 92-100.	1.2	6
60	Function of UreB in <i>Klebsiella aerogenes</i> Urease. Biochemistry, 2011, 50, 9296-9308.	2.5	15
61	Mechanisms of nickel toxicity in microorganisms. Metallomics, 2011, 3, 1153.	2.4	264
62	The Escherichia coli alkylation response protein AidB is a redox partner of flavodoxin and binds RNA and acyl carrier protein. Archives of Biochemistry and Biophysics, 2011, 513, 81-86.	3.0	3
63	Fructoseâ€1,6â€bisphosphate aldolase (class II) is the primary site of nickel toxicity in <i>Escherichia coli</i> . Molecular Microbiology, 2011, 82, 1291-1300.	2.5	63
64	lron-containing urease in a pathogenic bacterium. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13095-13099.	7.1	64
65	Human AlkB homologue 1 (ABH1) exhibits DNA lyase activity at abasic sites. DNA Repair, 2010, 9, 58-65.	2.8	58
66	Trypanosoma brucei brucei: Thymine 7-hydroxylase-like proteins. Experimental Parasitology, 2010, 124, 453-458.	1.2	5
67	Metal and substrate binding to an Fe(II) dioxygenase resolved by UV spectroscopy with global regression analysis. Analytical Biochemistry, 2010, 399, 64-71.	2.4	13
68	Crystal structure of a truncated urease accessory protein UreF from <i>Helicobacter pylori</i> . Proteins: Structure, Function and Bioinformatics, 2010, 78, 2839-2848.	2.6	37
69	Characterization of the <i>Klebsiella aerogenes</i> Urease Accessory Protein UreD in Fusion with the Maltose Binding Protein. Journal of Bacteriology, 2010, 192, 2294-2304.	2.2	29
70	Insight into the mechanism of an iron dioxygenase by resolution of steps following the Fe ^{IV} â•O species. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3982-3987.	7.1	89
71	Site-Directed Mutagenesis of the <i>Anabaena</i> sp. Strain PCC 7120 Nitrogenase Active Site To Increase Photobiological Hydrogen Production. Applied and Environmental Microbiology, 2010, 76, 6741-6750.	3.1	50
72	Mutagenesis of <i>Klebsiella aerogenes</i> UreG To Probe Nickel Binding and Interactions with Other Urease-Related Proteins. Biochemistry, 2010, 49, 5859-5869.	2.5	45

#	Article	IF	CITATIONS
73	Interplay of metal ions and urease. Metallomics, 2009, 1, 207.	2.4	155
74	Characterization of active site variants of xanthine hydroxylase from Aspergillus nidulans. Archives of Biochemistry and Biophysics, 2008, 470, 44-53.	3.0	10
75	The structure of urease activation complexes examined by flexibility analysis, mutagenesis, and small-angle X-ray scattering. Archives of Biochemistry and Biophysics, 2008, 480, 51-57.	3.0	33
76	Fell/α-ketoglutarate hydroxylases involved in nucleobase, nucleoside, nucleotide, and chromatin metabolism. Dalton Transactions, 2008, , 5132.	3.3	53
77	The protein that binds to DNA base J in trypanosomatids has features of a thymidine hydroxylase. Nucleic Acids Research, 2007, 35, 2107-2115.	14.5	84
78	Microbial Physiology of Nickel and Cobalt. , 2007, , 287-320.		13
79	Crll Reactivity of Taurine/α-Ketoglutarate Dioxygenase. Inorganic Chemistry, 2007, 46, 10087-10092.	4.0	2
80	Thermodynamics of Ni ²⁺ , Cu ²⁺ , and Zn ²⁺ Binding to the Urease Metallochaperone UreE. Biochemistry, 2007, 46, 10506-10516.	2.5	54
81	Purification and Characterization of the Fell- and α-Ketoglutarate-Dependent Xanthine Hydroxylase from Aspergillus nidulans. Biochemistry, 2007, 46, 5293-5304.	2.5	31
82	Probing the Ironâ^'Substrate Orientation for Taurine/α-Ketoglutarate Dioxygenase Using Deuterium Electron Spin Echo Envelope Modulation Spectroscopy. Biochemistry, 2007, 46, 5951-5959.	2.5	27
83	Chaperones of Nickel Metabolism. , 2007, , 519-544.		7
84	Metal ligand substitution and evidence for quinone formation in taurine/α-ketoglutarate dioxygenase. Journal of Inorganic Biochemistry, 2007, 101, 797-808.	3.5	39
85	An assay for Fe(II)/2-oxoglutarate-dependent dioxygenases by enzyme-coupled detection of succinate formation. Analytical Biochemistry, 2006, 353, 69-74.	2.4	27
86	Structural basis for the enantiospecificities ofR- andS-specific phenoxypropionate/α-ketoglutarate dioxygenases. Protein Science, 2006, 15, 1356-1368.	7.6	15
87	Inhibition of urease by bismuth(III): Implications for the mechanism of action of bismuth drugs. BioMetals, 2006, 19, 503-511.	4.1	112
88	Self-hydroxylation of taurine/α-ketoglutarate dioxygenase: evidence for more than one oxygen activation mechanism. Journal of Biological Inorganic Chemistry, 2006, 11, 63-72.	2.6	25
89	The AidB Component of the Escherichia coli Adaptive Response to Alkylating Agents Is a Flavin-Containing, DNA-Binding Protein. Journal of Bacteriology, 2006, 188, 223-230.	2.2	31
90	The UreEF Fusion Protein Provides a Soluble and Functional Form of the UreF Urease Accessory Protein. Journal of Bacteriology, 2006, 188, 8413-8420.	2.2	22

#	Article	IF	CITATIONS
91	Biosynthesis of Active Bacillus subtilis Urease in the Absence of Known Urease Accessory Proteins. Journal of Bacteriology, 2005, 187, 7150-7154.	2.2	33
92	Purification and Properties of the Klebsiella aerogenes UreE Metal-Binding Domain, a Functional Metallochaperone of Urease. Journal of Bacteriology, 2005, 187, 3581-3585.	2.2	32
93	Kinetic and spectroscopic investigation of Coll, Nill, and N-oxalylglycine inhibition of the Fell/α-ketoglutarate dioxygenase, TauD. Biochemical and Biophysical Research Communications, 2005, 338, 191-197.	2.1	38
94	Steady-State and Transient Kinetic Analyses of Taurine/α-Ketoglutarate Dioxygenase: Effects of Oxygen Concentration, Alternative Sulfonates, and Active-Site Variants on the FeIV-oxo Intermediateâ€. Biochemistry, 2005, 44, 3845-3855.	2.5	71
95	Metabolic Versatility of Prokaryotes for Urea Decomposition. Journal of Bacteriology, 2004, 186, 2520-2522.	2.2	35
96	Chemical Cross-linking and Mass Spectrometric Identification of Sites of Interaction for UreD, UreF, and Urease. Journal of Biological Chemistry, 2004, 279, 15305-15313.	3.4	57
97	Biosynthesis of Metal Sites. ChemInform, 2004, 35, no.	0.0	Ο
98	Aberrant activity of the DNA repair enzyme AlkB. Journal of Inorganic Biochemistry, 2004, 98, 856-861.	3.5	49
99	Fe(II)/Î \pm -Ketoglutarate-Dependent Hydroxylases and Related Enzymes. Critical Reviews in Biochemistry and Molecular Biology, 2004, 39, 21-68.	5.2	828
100	Direct Detection of Oxygen Intermediates in the Non-Heme Fe Enzyme Taurine/α-Ketoglutarate Dioxygenase. Journal of the American Chemical Society, 2004, 126, 1022-1023.	13.7	277
101	Biosynthesis of Metal Sites. Chemical Reviews, 2004, 104, 509-526.	47.7	118
102	Intrinsic tryptophan fluorescence as a probe of metal and α-ketoglutarate binding to TfdA, a mononuclear non-heme iron dioxygenase. Journal of Inorganic Biochemistry, 2003, 93, 66-70.	3.5	23
103	Nickel uptake and utilization by microorganisms. FEMS Microbiology Reviews, 2003, 27, 239-261.	8.6	413
104	O2- and α-Ketoglutarate-Dependent Tyrosyl Radical Formation in TauD, an α-Keto Acid-Dependent Non-Heme Iron Dioxygenaseâ€. Biochemistry, 2003, 42, 1854-1862.	2.5	110
105	Metal Ion Dependence of Recombinant Escherichia coli Allantoinase. Journal of Bacteriology, 2003, 185, 126-134.	2.2	29
106	Interconversion of two oxidized forms of taurine/Â-ketoglutarate dioxygenase, a non-heme iron hydroxylase: Evidence for bicarbonate binding. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3790-3795.	7.1	49
107	tfdA -Like Genes in 2,4-Dichlorophenoxyacetic Acid-Degrading Bacteria Belonging to the Bradyrhizobium-Agromonas-Nitrobacter-Afipia Cluster in α- Proteobacteria. Applied and Environmental Microbiology, 2002, 68, 3449-3454.	3.1	78
108	X-ray Crystal Structure ofEscherichia coliTaurine/α-Ketoglutarate Dioxygenase Complexed to Ferrous Iron and Substratesâ€,‡. Biochemistry, 2002, 41, 5185-5192.	2.5	216

#	Article	IF	CITATIONS
109	Probing the 2,4-Dichlorophenoxyacetate/α-Ketoglutarate Dioxygenase Substrate-Binding Site by Site-Directed Mutagenesis and Mechanism-Based Inactivationâ€. Biochemistry, 2002, 41, 9787-9794.	2.5	21
110	Non-heme iron oxygenases. Current Opinion in Chemical Biology, 2002, 6, 193-201.	6.1	213
111	Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature, 2002, 419, 174-178.	27.8	679
112	Alternative Reactivity of an α-Ketoglutarate-Dependent Iron(II) Oxygenase: Enzyme Self-Hydroxylation. Journal of the American Chemical Society, 2001, 123, 5126-5127.	13.7	94
113	Resonance Raman Studies of the Iron(II)â^α-Keto Acid Chromophore in Model and Enzyme Complexes. Journal of the American Chemical Society, 2001, 123, 5022-5029.	13.7	55
114	Alternative substrates of 2,4-dichlorophenoxyacetate/α-ketoglutarate dioxygenase. Journal of Molecular Catalysis B: Enzymatic, 2001, 15, 155-162.	1.8	28
115	Crystal Structure of Klebsiella aerogenesUreE, a Nickel-binding Metallochaperone for Urease Activation. Journal of Biological Chemistry, 2001, 276, 49359-49364.	3.4	86
116	Kinetic and Structural Characterization of Urease Active Site Variantsâ€,‡. Biochemistry, 2000, 39, 8575-8584.	2.5	97
117	In Vivo and in Vitro Kinetics of Metal Transfer by the Klebsiella aerogenes Urease Nickel Metallochaperone, UreE. Journal of Biological Chemistry, 2000, 275, 10731-10737.	3.4	57
118	Site-directed Mutagenesis of 2,4-Dichlorophenoxyacetic Acid/α-Ketoglutarate Dioxygenase. Journal of Biological Chemistry, 2000, 275, 12400-12409.	3.4	50
119	UreE Stimulation of GTP-Dependent Urease Activation in the UreD-UreF-UreG-urease Apoprotein Complex. Biochemistry, 2000, 39, 12435-12440.	2.5	90
120	Fluoride Inhibition ofKlebsiella aerogenesUrease:Â Mechanistic Implications of a Pseudo-uncompetitive, Slow-Binding Inhibitorâ€. Biochemistry, 2000, 39, 5389-5396.	2.5	100
121	X-ray absorption spectroscopic analysis of Fe(II) and Cu(II) forms of a herbicide-degrading α-ketoglutarate dioxygenase. Journal of Biological Inorganic Chemistry, 1999, 4, 122-129.	2.6	22
122	Stereospecific degradation of the phenoxypropionate herbicide dichlorprop. Journal of Molecular Catalysis B: Enzymatic, 1999, 6, 421-428.	1.8	28
123	Identification of Metal-Binding Residues in theKlebsiella aerogenesUrease Nickel Metallochaperone, UreEâ€. Biochemistry, 1999, 38, 4078-4088.	2.5	85
124	Stopped-Flow Kinetic Analysis ofEscherichia coliTaurine/α-Ketoglutarate Dioxygenase: Interactions with α-Ketoglutarate, Taurine, and Oxygenâ€. Biochemistry, 1999, 38, 15278-15286.	2.5	131
125	Herbicide-Degrading α-Keto Acid-Dependent Enzyme TfdA: Metal Coordination Environment and Mechanistic Insightsâ€. Biochemistry, 1999, 38, 16714-16726.	2.5	74
126	Cloning and Characterization of a Sulfonate/α-Ketoglutarate Dioxygenase from <i>Saccharomyces cerevisiae</i> . Journal of Bacteriology, 1999, 181, 5876-5879.	2.2	55

#	Article	IF	CITATIONS
127	Chemical Rescue ofKlebsiella aerogenesUrease Variants Lacking the Carbamylated-Lysine Nickel Ligandâ€,‡. Biochemistry, 1998, 37, 6214-6220.	2.5	50
128	Ascorbic Acid-Dependent Turnover and Reactivation of 2,4-Dichlorophenoxyacetic Acid/α-Ketoglutarate Dioxygenase Using Thiophenoxyacetic Acidâ€. Biochemistry, 1998, 37, 3035-3042.	2.5	32
129	Substitution of the Urease Active Site Carbamate by Dithiocarbamate and Vanadateâ€. Biochemistry, 1997, 36, 15118-15122.	2.5	17
130	Metal Coordination Environment of a Cu(II)-Substituted α-Keto Acid-Dependent Dioxygenase That Degrades the Herbicide 2,4-D. Journal of the American Chemical Society, 1997, 119, 3413-3414.	13.7	33
131	Structures of Cys319 Variants and Acetohydroxamate-InhibitedKlebsiella aerogenesUreaseâ€,‡. Biochemistry, 1997, 36, 8164-8172.	2.5	225
132	70 Years of Crystalline Urease:  What Have We Learned?. Accounts of Chemical Research, 1997, 30, 330-337.	15.6	361
133	Metallocenter assembly in nickel-containing enzymes. Journal of Biological Inorganic Chemistry, 1997, 2, 279-286.	2.6	73
134	Metal Ion Interactions with Urease and UreD-Urease Apoproteins. Biochemistry, 1996, 35, 5345-5352.	2.5	78
135	Characterization of the Mononickel Metallocenter in H134A Mutant Urease. Journal of Biological Chemistry, 1996, 271, 18632-18637.	3.4	33
136	Urease activity in the crystalline state. Protein Science, 1995, 4, 2234-2236.	7.6	19
137	Structure of the Dinuclear Active Site of Urease. X-ray Absorption Spectroscopic Study of Native and 2-Mercaptoethanol-Inhibited Bacterial and Plant Enzymes. Inorganic Chemistry, 1994, 33, 1589-1593.	4.0	86
138	Siteâ€directed mutagenesis of <i>Klebsiella aerogenes</i> urease: Identification of histidine residues that appear to function in nickel ligation, substrate binding, and catalysis. Protein Science, 1993, 2, 1034-1041.	7.6	83
139	Purification and characterization of <i>Klebsiella aerogenes</i> UreE protein: A nickelâ€binding protein that functions in urease metallocenter assembly. Protein Science, 1993, 2, 1042-1052.	7.6	156
140	Diethylpyrocarbonate reactivity ofKlebsiella aerogenes urease: Effect ofpH and active site ligands on the rate of inactivation. The Protein Journal, 1993, 12, 51-56.	1.1	25
141	Saturation magnetization of ureases from Klebsiella aerogenes and jack bean: no evidence for exchange coupling between the two active site nickel ions in the native enzymes. Inorganic Chemistry, 1993, 32, 634-638.	4.0	39
142	Urease. , 1993, , 23-57.		28
143	Preliminary crystallographic studies of urease from jack bean and from Klebsiella aerogenes. Journal of Molecular Biology, 1992, 227, 934-937.	4.2	53
144	Nickel and iron EXAFS of F420-reducing hydrogenase from Methanobacterium thermoautotrophicum. Journal of the American Chemical Society, 1984, 106, 3062-3064.	13.7	98

#	Article	IF	CITATIONS
145	Chapter 3. Transient Iron Species in the Catalytic Mechanism of the Archetypal <i>α</i> -Ketoglutarate-Dependent Dioxygenase, TauD. , 0, , 67-87.		7
146	CHAPTER 11. Lactate Racemase and Its Niacin-Derived, Covalently-Tethered, Nickel Cofactor. 2-Oxoglutarate-Dependent Oxygenases, 0, , 220-236.	0.8	3