David RamÃ-rez-Ortega

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4140042/publications.pdf

Version: 2024-02-01

20 papers 460 citations

11 h-index ⁷⁵²⁵⁷³
20
g-index

20 all docs

20 docs citations

times ranked

20

573 citing authors

#	Article	IF	CITATIONS
1	Semiconducting properties of ZnO/TiO2 composites by electrochemical measurements and their relationship with photocatalytic activity. Electrochimica Acta, 2014, 140, 541-549.	2.6	95
2	Interfacial charge-transfer process across ZrO2-TiO2 heterojunction and its impact on photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 335, 276-286.	2.0	64
3	SnO ₂ -TiO ₂ structures and the effect of CuO, CoO metal oxide on photocatalytic hydrogen production. Journal of Chemical Technology and Biotechnology, 2017, 92, 1531-1539.	1.6	47
4	Charge transfer processes involved in photocatalytic hydrogen production over CuO/ZrO2–TiO2 materials. International Journal of Hydrogen Energy, 2017, 42, 9744-9753.	3.8	39
5	Energetic states in SnO2–TiO2 structures and their impact on interfacial charge transfer process. Journal of Materials Science, 2017, 52, 260-275.	1.7	36
6	Enhancing the photocatalytic hydrogen production of the ZnO–TiO2 heterojunction by supporting nanoscale Au islands. International Journal of Hydrogen Energy, 2021, 46, 34333-34343.	3.8	25
7	Improving photocatalytic reduction of 4-nitrophenol over ZrO ₂ –TiO ₂ by synergistic interaction between methanol and sulfite ions. New Journal of Chemistry, 2017, 41, 12655-12663.	1.4	24
8	Ag2O/TiO2 nanostructures for the photocatalytic mineralization of the highly recalcitrant pollutant iopromide in pure and tap water. Catalysis Today, 2020, 341, 71-81.	2.2	19
9	Boosting the photocatalytic hydrogen production of TiO2 by using copper hexacyanocobaltate as co-catalyst. International Journal of Hydrogen Energy, 2021, 46, 10312-10323.	3.8	16
10	Enhancing the photocatalytic activity of Cd–ZnS(EN)0.5 hybrid sheets for the H2 production. International Journal of Hydrogen Energy, 2020, 45, 30496-30510.	3.8	14
11	Effect of Pd and Cu co-catalyst on the charge carrier trapping, recombination and transfer during photocatalytic hydrogen evolution over WO3–TiO2 heterojunction. Journal of Materials Science, 2020, 55, 16641-16658.	1.7	14
12	Biocompatibility and electrochemical evaluation of ZrO2 thin films deposited by reactive magnetron sputtering on MgZnCa alloy. Journal of Magnesium and Alloys, 2021, 9, 2019-2038.	5 . 5	13
13	Surface modification of B–TiO2 by deposition of Au nanoparticles to increase its photocatalytic activity under simulated sunlight irradiation. Journal of Sol-Gel Science and Technology, 2018, 88, 474-487.	1.1	12
14	Photocatalytic degradation of 2,4-dichlorophenol on ZrO2–TiO2: influence of crystal size, surface area, and energetic states. Journal of Materials Science: Materials in Electronics, 2020, 31, 3332-3341.	1.1	9
15	Effect of Co-catalyst (CuO, CoO or NiO) on Bi2O3–TiO2 Structures and Its Impact on the Photocatalytic Reduction of 4-nitrophenol. Topics in Catalysis, 2021, 64, 112-120.	1.3	8
16	Rapid breakdown anodization to obtain nanostructured TiO2 powders for photocatalytic hydrogen generation. Journal of Materials Science: Materials in Electronics, 2017, 28, 9859-9866.	1.1	7
17	Synergistic photocatalytic effect of BiOBr–BiOI heterojunctions due to appropriate layer stacking. Dalton Transactions, 2022, 51, 2413-2427.	1.6	6
18	Development a Boron Potentiometric Determination Methodology Using a Carbon Paste Electrode Modified with a \hat{l}^2 -Cyclodextrine- Azomethine-H Inclusion Complex. ECS Transactions, 2009, 20, 13-19.	0.3	5

#	Article	IF	CITATIONS
19	Unexpected cytotoxicity of TiO2-coated magnesium alloys. Materials Letters, 2020, 276, 128236.	1.3	4
20	Degradation Behavior and Mechanical Integrity of a Mg-0.7Zn-0.6Ca (wt.%) Alloy: Effect of Grain Sizes and Crystallographic Texture. Materials, 2022, 15, 3142.	1.3	3