Fan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4140026/publications.pdf

Version: 2024-02-01

		126708	114278
64	4,788 citations	33	63
papers	citations	h-index	g-index
68	68	68	3197
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Social Sensing: A New Approach to Understanding Our Socioeconomic Environments. Annals of the American Association of Geographers, 2015, 105, 512-530.	3.0	557
2	Urban land uses and traffic â€~source-sink areas': Evidence from GPS-enabled taxi data in Shanghai. Landscape and Urban Planning, 2012, 106, 73-87.	3.4	344
3	Measuring human perceptions of a large-scale urban region using machine learning. Landscape and Urban Planning, 2018, 180, 148-160.	3.4	325
4	Understanding intra-urban trip patterns from taxi trajectory data. Journal of Geographical Systems, 2012, 14, 463-483.	1.9	273
5	Uncovering Patterns of Inter-Urban Trip and Spatial Interaction from Social Media Check-In Data. PLoS ONE, 2014, 9, e86026.	1.1	249
6	Mapping sky, tree, and building view factors of street canyons in a high-density urban environment. Building and Environment, 2018, 134, 155-167.	3.0	193
7	Virtual Geographic Environments (VGEs): A New Generation of Geographic Analysis Tool. Earth-Science Reviews, 2013, 126, 74-84.	4.0	176
8	Inferring trip purposes and uncovering travel patterns from taxi trajectory data. Cartography and Geographic Information Science, 2016, 43, 103-114.	1.4	173
9	Intra-Urban Human Mobility and Activity Transition: Evidence from Social Media Check-In Data. PLoS ONE, 2014, 9, e97010.	1.1	170
10	Reflections and speculations on the progress in Geographic Information Systems (GIS): a geographic perspective. International Journal of Geographical Information Science, 2019, 33, 346-367.	2.2	149
11	Virtual Geographic Environment: A Workspace for Computer-Aided Geographic Experiments. Annals of the American Association of Geographers, 2013, 103, 465-482.	3.0	134
12	Incorporating spatial interaction patterns in classifying and understanding urban land use. International Journal of Geographical Information Science, 2016, 30, 334-350.	2.2	121
13	A review of urban physical environment sensing using street view imagery in public health studies. Annals of GIS, 2020, 26, 261-275.	1.4	116
14	Social sensing from street-level imagery: A case study in learning spatio-temporal urban mobility patterns. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 153, 48-58.	4.9	114
15	Towards Estimating Urban Population Distributions from Mobile Call Data. Journal of Urban Technology, 2012, 19, 3-21.	2.5	113
16	Representing place locales using scene elements. Computers, Environment and Urban Systems, 2018, 71, 153-164.	3.3	91
17	Spatial interpolation using conditional generative adversarial neural networks. International Journal of Geographical Information Science, 2020, 34, 735-758.	2.2	86
18	Understanding house price appreciation using multi-source big geo-data and machine learning. Land Use Policy, 2021, 111, 104919.	2.5	83

#	Article	IF	CITATIONS
19	Robust Detection of Single and Double Persistent Scatterers in Urban Built Environments. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 2124-2139.	2.7	7 5
20	Street as a big geo-data assembly and analysis unit in urban studies: A case study using Beijing taxi data. Applied Geography, 2017, 86, 152-164.	1.7	74
21	Understanding Place Characteristics in Geographic Contexts through Graph Convolutional Neural Networks. Annals of the American Association of Geographers, 2020, 110, 408-420.	1.5	68
22	Uncovering inconspicuous places using social media check-ins and street view images. Computers, Environment and Urban Systems, 2020, 81, 101478.	3.3	66
23	Classification and mapping of urban canyon geometry using Google Street View images and deep multitask learning. Building and Environment, 2020, 167, 106424.	3.0	61
24	Towards feasibility of photovoltaic road for urban traffic-solar energy estimation using street view image. Journal of Cleaner Production, 2019, 228, 303-318.	4.6	57
25	Investigating Public Facility Characteristics from a Spatial Interaction Perspective: A Case Study of Beijing Hospitals Using Taxi Data. ISPRS International Journal of Geo-Information, 2017, 6, 38.	1.4	54
26	Extracting human emotions at different places based on facial expressions and spatial clustering analysis. Transactions in GIS, 2019, 23, 450-480.	1.0	53
27	Access to hospitals: Potential vs. observed. Cities, 2020, 100, 102671.	2.7	53
28	Inferring spatial interaction patterns from sequential snapshots of spatial distributions. International Journal of Geographical Information Science, 2018, 32, 783-805.	2.2	45
29	Developing dynamic virtual geographic environments (VGEs) for geographic research. Environmental Earth Sciences, 2015, 74, 6975-6980.	1.3	43
30	Evaluating healthcare resource inequality in Beijing, China based on an improved spatial accessibility measurement. Transactions in GIS, 2021, 25, 1504-1521.	1.0	40
31	Human settlement value assessment from a place perspective: Considering human dynamics and perceptions in house price modeling. Cities, 2021, 118, 103333.	2.7	39
32	Morphometric characterisation of landform from DEMs. International Journal of Geographical Information Science, 2010, 24, 305-326.	2,2	38
33	Spatial Origin-Destination Flow Imputation Using Graph Convolutional Networks. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 7474-7484.	4.7	36
34	Vectorized rooftop area data for 90 cities in China. Scientific Data, 2022, 9, 66.	2.4	35
35	Discovering place-informative scenes and objects using social media photos. Royal Society Open Science, 2019, 6, 181375.	1.1	34
36	Urban function recognition by integrating social media and street-level imagery. Environment and Planning B: Urban Analytics and City Science, 2021, 48, 1430-1444.	1.0	33

#	Article	IF	CITATIONS
37	Prediction of InSAR time-series deformation using deep convolutional neural networks. Remote Sensing Letters, 2020, 11, 137-145.	0.6	31
38	Places for play: Understanding human perception of playability in cities using street view images and deep learning. Computers, Environment and Urban Systems, 2021, 90, 101693.	3.3	31
39	The financial impact of street-level greenery on New York commercial buildings. Landscape and Urban Planning, 2021, 214, 104162.	3.4	30
40	Framework for Virtual Cognitive Experiment in Virtual Geographic Environments. ISPRS International Journal of Geo-Information, 2018, 7, 36.	1.4	28
41	Understanding architecture age and style through deep learning. Cities, 2022, 128, 103787.	2.7	27
42	An SOE-Based Learning Framework Using Multisource Big Data for Identifying Urban Functional Zones. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 7336-7348.	2.3	26
43	Geographic modeling and simulation systems for geographic research in the new era: Some thoughts on their development and construction. Science China Earth Sciences, 2021, 64, 1207-1223.	2.3	26
44	Mapping Human Activity Volumes Through Remote Sensing Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 5652-5668.	2.3	23
45	New metro system and active travel: A natural experiment. Environment International, 2020, 138, 105605.	4.8	23
46	A fuzzy formal concept analysis-based approach to uncovering spatial hierarchies among vague places extracted from user-generated data. International Journal of Geographical Information Science, 2019, 33, 991-1016.	2.2	22
47	Sensing Population Distribution from Satellite Imagery Via Deep Learning:Model Selection, Neighboring Effects, and Systematic Biases. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 5137-5151.	2.3	17
48	A method to evaluate task-specific importance of spatio-temporal units based on explainable artificial intelligence. International Journal of Geographical Information Science, 2021, 35, 2002-2025.	2.2	15
49	LADV: Deep Learning Assisted Authoring of Dashboard Visualizations From Images and Sketches. IEEE Transactions on Visualization and Computer Graphics, 2021, 27, 3717-3732.	2.9	13
50	A virtual learning environment of the Chinese University of Hong Kong. International Journal of Digital Earth, 2011, 4, 171-182.	1.6	12
51	Spatial regression graph convolutional neural networks: A deep learning paradigm for spatial multivariate distributions. GeoInformatica, 2022, 26, 645-676.	2.0	12
52	Emotional habitat: mapping the global geographic distribution of human emotion with physical environmental factors using a species distribution model. International Journal of Geographical Information Science, 2021, 35, 227-249.	2.2	11
53	HiSpatialCluster: A novel highâ€performance software tool for clustering massive spatial points. Transactions in GIS, 2018, 22, 1275-1298.	1.0	10
54	Quantifying legibility of indoor spaces using Deep Convolutional Neural Networks: Case studies in train stations. Building and Environment, 2019, 160, 106099.	3.0	8

#	Article	IF	CITATIONS
55	STICC: a multivariate spatial clustering method for repeated geographic pattern discovery with consideration of spatial contiguity. International Journal of Geographical Information Science, 2022, 36, 1518-1549.	2.2	8
56	Association between neighborhood aesthetics and childhood obesity. Obesity Reviews, 2021, 22, e13079.	3.1	7
57	Deep Roof Refiner: A detail-oriented deep learning network for refined delineation of roof structure lines using satellite imagery. International Journal of Applied Earth Observation and Geoinformation, 2022, 107, 102680.	1.4	7
58	Typeface Reveals Spatial Economical Patterns. Scientific Reports, 2019, 9, 15946.	1.6	6
59	Mining urban perceptions from social media data. Journal of Spatial Information Science, 2020, , .	1.1	4
60	VGEs as a New Platform for Urban Modeling and Simulation. Sustainability, 2022, 14, 7980.	1.6	4
61	Rhythm of Transit Stations - Uncovering the Activity-Travel Dynamics of Transit-Oriented Development in the U.S IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 12503-12517.	4.7	2
62	Automatic Building Age Prediction from Street View Images., 2021,,.		1
63	Introduction to the Special Issue: "State-of-the-Art Virtual/Augmented Reality and 3D Modeling Techniques for Virtual Urban Geographic Experiments― ISPRS International Journal of Geo-Information, 2018, 7, 366.	1.4	0
64	The Financial Impact of Street-Level Greenery on New York Commercial Buildings. SSRN Electronic Journal, 0, , .	0.4	0