Zilong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4139976/publications.pdf

Version: 2024-02-01

		101496	1	168321
50	7,771	36		53
papers	citations	h-index		g-index
5 2	5 2	5 2		11642
53	53	53		11643
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Efficiency Enhancement of Perovskite Solar Cells through Fast Electron Extraction: The Role of Graphene Quantum Dots. Journal of the American Chemical Society, 2014, 136, 3760-3763.	6.6	688
2	Space-Confined Growth of MoS ₂ Nanosheets within Graphite: The Layered Hybrid of MoS ₂ and Graphene as an Active Catalyst for Hydrogen Evolution Reaction. Chemistry of Materials, 2014, 26, 2344-2353.	3.2	634
3	Metallic Iron–Nickel Sulfide Ultrathin Nanosheets As a Highly Active Electrocatalyst for Hydrogen Evolution Reaction in Acidic Media. Journal of the American Chemical Society, 2015, 137, 11900-11903.	6.6	609
4	Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendriteâ€Free Zn Ion Batteries Achieved by a Lowâ€Cost Glucose Additive. Angewandte Chemie - International Edition, 2021, 60, 18247-18255.	7.2	529
5	Transition metal based layered double hydroxides tailored for energy conversion and storage. Materials Today, 2016, 19, 213-226.	8.3	464
6	Nitrogenâ€Doped Co ₃ O ₄ Mesoporous Nanowire Arrays as an Additiveâ€Free Airâ€Cathode for Flexible Solidâ€State Zinc–Air Batteries. Advanced Materials, 2017, 29, 1602868.	11.1	428
7	Highâ€Performance Holeâ€Extraction Layer of Sol–Gelâ€Processed NiO Nanocrystals for Inverted Planar Perovskite Solar Cells. Angewandte Chemie - International Edition, 2014, 53, 12571-12575.	7.2	355
8	Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes. Energy and Environmental Science, 2017, 10, 772-779.	15.6	315
9	Engineering stepped edge surface structures of MoS ₂ sheet stacks to accelerate the hydrogen evolution reaction. Energy and Environmental Science, 2017, 10, 593-603.	15.6	284
10	Highâ€Performance Grapheneâ€Based Hole Conductorâ€Free Perovskite Solar Cells: Schottky Junction Enhanced Hole Extraction and Electron Blocking. Small, 2015, 11, 2269-2274.	5.2	233
11	Dualâ€Doped Molybdenum Trioxide Nanowires: A Bifunctional Anode for Fiberâ€Shaped Asymmetric Supercapacitors and Microbial Fuel Cells. Angewandte Chemie - International Edition, 2016, 55, 6762-6766.	7.2	230
12	Co intake mediated formation of ultrathin nanosheets of transition metal LDHâ€"an advanced electrocatalyst for oxygen evolution reaction. Chemical Communications, 2015, 51, 1120-1123.	2.2	195
13	NiFe nanoparticles embedded N-doped carbon nanotubes as high-efficient electrocatalysts for wearable solid-state Zn-air batteries. Nano Energy, 2020, 68, 104293.	8.2	193
14	Rational design of MoS2-reduced graphene oxide sponges as free-standing anodes for sodium-ion batteries. Chemical Engineering Journal, 2018, 332, 260-266.	6.6	159
15	Cobalt-Embedded Nitrogen Doped Carbon Nanotubes: A Bifunctional Catalyst for Oxygen Electrode Reactions in a Wide pH Range. ACS Applied Materials & Samp; Interfaces, 2015, 7, 4048-4055.	4.0	156
16	Recent progress in the development of anodes for asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 4634-4658.	5.2	154
17	Novel 3D Nanoporous Zn–Cu Alloy as Long‣ife Anode toward Highâ€Voltage Double Electrolyte Aqueous Zincâ€lon Batteries. Small, 2020, 16, e2001323.	5.2	136
18	Rational design of carbon shell endows TiN@C nanotube based fiber supercapacitors with significantly enhanced mechanical stability and electrochemical performance. Nano Energy, 2017, 31, 432-440.	8.2	112

#	Article	IF	CITATIONS
19	Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendriteâ€Free Zn Ion Batteries Achieved by a Lowâ€Cost Glucose Additive. Angewandte Chemie, 2021, 133, 18395-18403.	1.6	97
20	A review of hard carbon anode: Rational design and advanced characterization in potassium ion batteries. Informa Än Ã-Materi Ãily, 2022, 4, .	8.5	85
21	Mesoporous SnO ₂ single crystals as an effective electron collector for perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17, 18265-18268.	1.3	82
22	Strongly Coupled NiCo ₂ O ₄ Nanocrystal/MXene Hybrid through In Situ Ni/Co–F Bonds for Efficient Wearable Zn–Air Batteries. ACS Applied Materials & Diterfaces, 2020, 12, 44639-44647.	4.0	82
23	Hybrid Perovskiteâ€Organic Flexible Tandem Solar Cell Enabling Highly Efficient Electrocatalysis Overall Water Splitting. Advanced Energy Materials, 2020, 10, 2000361.	10.2	79
24	A multifunctional C + epoxy/Ag-paint cathode enables efficient and stable operation of perovskite solar cells in watery environments. Journal of Materials Chemistry A, 2015, 3, 16430-16434.	5.2	77
25	Co(II) _{1–<i>x</i>} Co(0) _{<i>x</i>/3} Mn(III) _{2<i>x</i>/3} S Nanoparticles Supported on B/N-Codoped Mesoporous Nanocarbon as a Bifunctional Electrocatalyst of Oxygen Reduction/Evolution for High-Performance Zinc-Air Batteries. ACS Applied Materials & Diterfaces, 2016, 8, 13348-13359.	4.0	77
26	Construction of highly dispersed mesoporous bimetallic-sulfide nanoparticles locked in N-doped graphitic carbon nanosheets for high energy density hybrid flexible pseudocapacitors. Journal of Materials Chemistry A, 2019, 7, 17435-17445.	5.2	77
27	Origin of the Different Photoelectrochemical Performance of Mesoporous BiVO ₄ Photoanodes between the BiVO ₄ and the FTO Side Illumination. Journal of Physical Chemistry C, 2015, 119, 23350-23357.	1.5	70
28	Dualâ€Doped Molybdenum Trioxide Nanowires: A Bifunctional Anode for Fiberâ€Shaped Asymmetric Supercapacitors and Microbial Fuel Cells. Angewandte Chemie, 2016, 128, 6874-6878.	1.6	70
29	A novel CoOOH/(Ti, C)-Fe2O3 nanorod photoanode for photoelectrochemical water splitting. Science China Materials, 2018, 61, 887-894.	3.5	69
30	Fabrication of CuFe ₂ O ₄ /α-Fe ₂ O ₃ Composite Thin Films on FTO Coated Glass and 3-D Nanospike Structures for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Spli	4.0	67
31	Solar-powered overall water splitting system combing metal-organic frameworks derived bimetallic nanohybrids based electrocatalysts and one organic solar cell. Nano Energy, 2019, 56, 82-91.	8.2	55
32	Theoretical calculation guided electrocatalysts design: Nitrogen saturated porous Mo2C nanostructures for hydrogen production. Applied Catalysis B: Environmental, 2019, 257, 117891.	10.8	46
33	High-Performance Porous Molybdenum Oxynitride Based Fiber Supercapacitors. ACS Applied Materials & Lamp; Interfaces, 2017, 9, 29699-29706.	4.0	44
34	Improving Photovoltaic Performance Using Perovskite/Surfaceâ€Modified Graphitic Carbon Nitride Heterojunction. Solar Rrl, 2020, 4, 1900413.	3.1	38
35	Coordination and interface engineering to boost catalytic property of two-dimensional ZIFs for wearable Zn-air batteries. Journal of Energy Chemistry, 2022, 68, 78-86.	7.1	33
36	Facile synthesis of TiO2/Mn3O4 hierarchical structures for fiber-shaped flexible asymmetric supercapacitors with ultrahigh stability and tailorable performance. Journal of Materials Chemistry A, 2017, 5, 814-821.	5.2	32

#	Article	IF	CITATIONS
37	Manipulating Interfacial Stability Via Absorption-Competition Mechanism for Long-Lifespan Zn Anode. Nano-Micro Letters, 2022, 14, 31.	14.4	30
38	Surface engineered CoP/Co ₃ O ₄ heterojunction for high-performance bi-functional water splitting electro-catalysis. Nanoscale, 2021, 13, 20281-20288.	2.8	26
39	Pt/Zn heterostructure as efficient air-electrocatalyst for long-life neutral Zn-air batteries. Science China Materials, 2021, 64, 1868-1875.	3.5	25
40	Freestanding polypyrrole/carbon nanotube electrodes with high mass loading for robust flexible supercapacitors. Materials Chemistry Frontiers, 2021, 5, 1324-1329.	3.2	24
41	Freestanding 2D NiFe Metal–Organic Framework Nanosheets: Facilitating Proton Transfer via Organic Ligands for Efficient Oxygen Evolution Reaction. Small, 2022, 18, .	5.2	23
42	In situ growth of a TiO ₂ layer on a flexible Ti substrate targeting the interface recombination issue of BiVO ₄ photoanodes for efficient solar water splitting. Journal of Materials Chemistry A, 2017, 5, 20195-20201.	5.2	22
43	Engineering Ternary Copper-Cobalt Sulfide Nanosheets as High-performance Electrocatalysts toward Oxygen Evolution Reaction. Catalysts, 2019, 9, 459.	1.6	21
44	p-Type NiO modified BiVO4 photoanodes with enhanced charge separation and solar water oxidation kinetics. Materials Letters, 2019, 249, 128-131.	1.3	17
45	Construction of bicontinuously porous Ni architecture as a deposition scaffold for high performance electrochemical supercapacitors. Nano Energy, 2014, 10, 329-336.	8.2	15
46	3D Porous Nb ₂ C MXene/reduced graphene oxide aerogel coupled with NiFe alloy nanoparticles for wearable Zn–air batteries. Materials Chemistry Frontiers, 2021, 5, 7315-7322.	3.2	14
47	Atomic layer deposited Al ₂ O ₃ layer confinement: an efficient strategy to synthesize durable MOF-derived catalysts toward the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2021, 8, 1432-1438.	3.0	10
48	Dithieno[3,2-b:2′,3′-d]pyran-containing organic D–π–A sensitizers for dye-sensitized solar cells. RSC Advances, 2014, 4, 62472-62475.	1.7	7
49	Exploratory Study of Zn _{<i>x</i>} PbO _{<i>y</i>} Photoelectrodes for Unassisted Overall Solar Water Splitting. ACS Applied Materials & Samp; Interfaces, 2018, 10, 10918-10926.	4.0	7
50	Corrosion engineering towards a high-energy Mn doped Co ₃ O ₄ nanoflake cathode for rechargeable Zn-based batteries. Materials Advances, 2022, 3, 6441-6445.	2.6	1